Abstract:
Method and apparatus for dynamic Node healing in a Multi-Node environment. A multi-node platform controller hub (MN-PCH) is configured to support multiple nodes through use of dedicated interfaces and components and shared capabilities. Interfaces and components may be configured to be used by respective nodes, or may be configured to support enhanced resiliency as redundant primary and spare interfaces and components. In response to detecting a failing or failing primary interface or component, the MN-PCH automatically performs failover operations to replace the primary with the spare. Moreover, the failover operation is transparent to the operating systems running on the platform's nodes.
Abstract:
A storage system is provided. The storage system includes a plurality of storage units, each of the plurality of storage units having storage memory for user data and a plurality of storage nodes, each of the plurality of storage nodes configured to have ownership of a portion of the user data. The storage system includes a first pathway, coupling the plurality of storage units such that each of the plurality of storage units can communicate with at least one other of the plurality of storage units via the first pathway without assistance from the plurality of storage nodes.
Abstract:
A plurality of storage nodes is provided. The plurality of storage nodes is configured to communicate together as a storage cluster. Each of the plurality of storage nodes includes nonvolatile solid-state memory. The plurality of storage nodes is configured to distribute user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of one of the plurality of storage nodes. A chassis enclosing the plurality of storage nodes includes power distribution, a high speed communication bus and the ability to install one or more storage nodes which may use the power distribution and communication bus in some embodiments. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
A plurality of storage nodes in a single chassis is provided. The plurality of storage nodes in the single chassis is configured to communicate together as a storage cluster. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. A plurality of compute nodes is included in the single chassis, each of the plurality of compute nodes is configured to communicate with the plurality of storage nodes. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
A symmetric multi-core processor arrangement for a safety critical system, including: a symmetric multi-processor having at least two cores and a memory shared for the at least two cores; and a hypervisor connected to the symmetric multi-processor, and configured to organize access to the at least two cores for at least a diagnostic application checking the safety critical system; wherein, during use, the diagnostic application is configured to read from and write to the memory, and the hypervisor is configured to read only from the memory.
Abstract:
Information communication circuitry, including a first integrated circuit for coupling to a second integrated circuit in a package on package configuration. The first integrated circuit comprises processing circuitry for communicating information bits, and the information bits comprise data bits and error correction bits, where the error correction bits are for indicating whether data bits are received correctly. The second integrated circuit comprises a memory for receiving and storing at least some of the information bits. The information communication circuitry also includes interfacing circuitry for selectively communicating, along a number of conductors, between the package on package configuration. In a first instance, the interfacing circuitry selectively communicates only data bits along the number of conductors. In a second instance, the interfacing circuitry selectively communicates data bits along a first set of the number of conductors and error correction bits along a second set of the number of conductors.
Abstract:
In a storage system for backing up data of an external apparatus, the external apparatus and a storage apparatus collaboratively perform efficient de-duplication. A storage system stores data from the external apparatus in a unit of content, and includes a backup apparatus configured to execute backup processing to create backup data of the data from the external apparatus in the unit of content; and a storage apparatus coupled to the backup apparatus in a communication-enabled manner and configured to store the backup data received from the backup apparatus. A first backup processing part of the backup apparatus determines whether or not a content is already stored in the storage apparatus by using first redundancy determination information that is information for determining whether or not each of contents of the backup data is already stored in the storage apparatus.
Abstract:
The present specification provides a high availability system. In one aspect a replicator is situated between a plurality of servers and a network. Each server is configured to execute a plurality of identical message processors. The replicator is configured to forward messages to two or more of the identical message processors, and to accept a response to the message as being valid if there is a quorum of identical responses.
Abstract:
Network repeaters which each implement a redundant switching function previously grasp connection states of ports of a network system by using an inquiry frame and an exchange frame. At the time when a line is broken, when actively confirming a state of a port connected to a port in which a line is broken via a downstream device, the network repeaters each grasp that which portion of the line is broken and determine whether a switchover is required. Through the process, the network repeaters each prevent a useless switchover such as switching-back immediately after the switchover, and at the same time since a mechanism of waiting for a given length of times is not required, they each perform a fast switchover.
Abstract:
A system for maintaining a two-site configuration for continuous availability over long distances may include a first computing site configured to execute a first instance associated with a priority workload, the first instance being designated as an active instance; a second computing site configured to execute a second instance of the priority workload, the second instance being designated as a standby instance; a software replication module configured to replicate a unit of work data associated with the priority workload from a first data object associated with the active instance to a second data object associated with the standby instance, and a hardware replication module configured to replicate an image from a first storage volume to a copy on a second storage volume, wherein the first storage volume is associated with the first computing site, and the second storage volume is associated with a third computing site.