Abstract:
L'invention concerne un processeur d'exécution d'un algorithme Rijndeal, effectuant plusieurs tours de chiffrement d'une matrice composée de blocs de données pour obtenir une matrice de même taille, chaque tour impliquant une matrice de blocs de clés et une table de substitution des blocs de données, le processeur comportant : un premier registre d'entrée (102) pour contenir une colonne de blocs de données d'entrée ; un registre de sortie (111) pour contenir une colonne de blocs de données de sortie ou une colonne de blocs intermédiaires ; un deuxième registre d'entrée (101) pour contenir une colonne de blocs de clés ou les blocs de données intermédiaires ; un élément (104) de substitution de blocs recevant les données bloc par bloc après sélection (103) dans le premier registre et fournissant, pour chaque bloc, une colonne de blocs ; un élément (109) de permutation circulaire des blocs de la colonne du circuit de substitution ; et un élément (110) de combinaison OU-Exclusif de la colonne de blocs du circuit de permutation avec le contenu du deuxième registre, le résultat de la combinaison étant chargée dans le registre de sortie.
Abstract:
A process for the fabrication of an integrated device in a semiconductor chip envisages: forming a semiconductor layer (5') partially suspended above a semiconductor substrate (2) and constrained to the substrate (2) by temporary anchorages (10, 15'); dividing the layer (5') into a plurality of portions (13) laterally separated from one another; and removing the temporary anchorages (10, 15'; 38), in order to free the portions (13).
Abstract:
A power device (1) formed by a thyristor (25) and by a MOSFET transistor (26), series-connected between a first and a second current-conduction terminal (A, S). the power device (1) moreover has a control terminal (G) connected to an insulated-gate electrode (20) of the MOSFET transistor (26) and receiving a control voltage for turning on/off the device, and a third current-conduction terminal (B) connected to the thyristor (25) for fast extraction of charges during turning-off. Thereby, upon turning off, there are no current tails, and turning off is very fast. The power device does not have parasitic components and consequently has a very high reversebias safe-operating area (RBSOA).
Abstract:
A device for maintaining fine alignment between an incoming spread spectrum signal and a locally generated code in a digital communication receiver comprises: - a delay line (56) for storing a plurality of consecutive samples (E-1, E, M, L, L+1) of the incoming spread spectrum signal; - three digitally controlled interpolators (24, 26, 28) for determining by interpolation between consecutive samples an interpolated early sample (e), an interpolated middle sample (m) and an interpolated late sample (1); - two correlators (30, 32) for calculating an error signal (ξ) as the difference between the energy of the symbols computed from the interpolated early (e) and late (1) samples; - a circuit for generating a control signal (S¿OUT?) for controlling the interpolation phase of the digitally controlled interpolator (24) for the early sample (e), and - a digital non-linear filter (68), for smoothing the control signal (S¿OUT?) of the interpolator (24) for the early sample (e), enabling the update operation of the control signal only when the absolute value (|ξ(n)|) of the error signal at a time instant n is smaller than the absolute value (|ξ(n-1)|) of the same error signal at a time instant n-1.
Abstract:
The circuit comprises a differential amplifier (10) with two inputs and two outputs and a common mode regulation circuit. Between a regulation terminal (INCM) of the amplifier and the outputs there are connected a first (C1p) and a second (1m) capacitor and first (C3) and second (C4) capacitive means that by means of controlled switches (SW9-SW12) can be alternatively and simultaneousy connected in parallel with, respectively, the first ((C1p) and the second (C1m) capacitor or between a first (VB) and a second (Vref1) reference voltage terminal. The capacitances C3 and C4 may be different in value such as to satisfy the following equality: Vcmn = Vref1 + '(Vrefp-Vrefm)/2!* (C4-C3)/(C3+C4), where Vcmn is the desired common mode output voltage, Vrefp and Vrefm are the differential output voltages and Vref1 is the voltage of the second reference terminal.are chosen in such a way as to satisfy the following equality : Vcmn = Vref1 + [(Vrefp-Vrefm)/2] * (C4-C3)/(C3+C4), where Vcmn is the desired common mode output voltage, Vrefp and Vrefm are the differential output voltages and Vref1 is the voltage of the second reference terminal.
Abstract:
The present description concerns an embedded electronic system or a method implemented by such a system including: at least one volatile memory (RAM); at least one low-level operating system managing the allocation of areas of the volatile memory to a plurality of high-level operating systems, each including one or a plurality of applications (App20, App21), wherein data of execution of one or a plurality of tasks of said first application (App20) are partly transferred by the low-level operating system from said volatile memory to a non-volatile memory (WM) when the execution of said task of the first application is interrupted by the execution of at least one task of a second application (App21).
Abstract:
A method comprises molding laser direct structuring material (10), having particles (12) dispersed therein, onto at least one semiconductor die (11), applying laser beam energy to produce structured formations (14) with a part of the particles (12) exposed at the structured formations (14), contacting the structured formations (14) with a solution containing one or more organic compounds, forming a film covering at least partly the structured formations (14) and comprising one or more conductive polymers resulting from a polymerization reaction of the one or more organic compounds, and forming electrically-conductive material (24) onto the film.
Abstract:
La présente description concerne un élément sécurisé embarqué (E) comprenant une mémoire volatile (PRAM), et étant configuré pour mettre en oeuvre au moins une partie d'une première application (App30) et au moins une partie d'une ou plusieurs deuxièmes applications (App31) adaptées à être mises en oeuvre par au moins un système d'exploitation de bas niveau (113) de l'élément sécurisé embarqué (E), dans lequel: - des données d'exécution de ladite première application (App30) sont stockées dans une première partie réservée de ladite mémoire volatile (PRAM) configurée pour stocker uniquement des données d'exécution de ladite première application (App30); et - des données d'exécution desdites deuxièmes applications sont stockées dans une deuxième partie de ladite mémoire volatile (PRAM) distincte de la première partie réservée de ladite mémoire volatile (PRAM).
Abstract:
A device (504) includes an interface (508) and Time Division Multiple Access (TDMA) Medium Access Control (MAC) circuitry (510) coupled to the interface. The TDMA MAC circuitry (510) detects (610) a beacon (210) in a frame (202) having a defined frame duration and determines (620) a frame compensation value based on a start time of the frame, a reference start time of the frame, and a number of elapsed frames. A current frame duration value is determined (622) based on the frame compensation value and the defined frame duration.
Abstract:
An electronic device includes a rectifier bridge (130) that includes an input configured to be coupled to power over Ethernet (PoE) power sourcing equipment (PSE), and an output. A transistor (140) is configured to selectively couple the output with a load. The electronic device includes a maintain power signature (MPS) device (170), and a control circuit (180). The control circuit is to maintain the transistor on when a load current is above a threshold, source current from the rectifier bridge to the MPS device when the load current is below the threshold, and switch the transistor to a diode configuration when the load current is below the threshold.