Abstract:
An apparatus for processing a three-dimensional structure having a fine three-dimensional shape and a smooth surface is disclosed in which the three-dimensional structure is usable for an optical device. The process method includes depositing a thin layer for absorption of laser light on a flat substrate; depositing a transparent layer on the thin layer for absorption of laser light; and irradiating a process laser light, passing through the transparent layer; in which pulse injection energy of the process laser light is set to be the same as or smaller than the maximum pulse injection energy capable of exposing a surface of the thin layer in front in the incident direction of the process laser light, and to be set the same as or greater than the minimum pulse injection energy capable of removing the transparent layer in rear in the incident direction of the process laser light.
Abstract:
The present disclosure relates to methods of treating a silicon substrate with an ultra-fast laser to create a getter material for example in a substantially enclosed MEMS package. In an embodiment, the laser treating comprises irradiating the silicon surface with a plurality of laser pulses adding gettering microstructure to the treated surface. Semiconductor based packaged devices, e.g. MEMS, are given as examples hereof.
Abstract:
The invention relates to a method for production of packaged electronic, in particular optoelectronic, components in a composite wafer, in which the packaging is carried out by fitting microframe structures of a cover substrate composed of glass, and the composite wafer is broken up along trenches which are produced in the cover substrate, and to packaged electronic components which can be produced using this method, comprising a composite of a mount substrate and a cover substrate, with at least one functional element and at least one bonding element, which makes contact with the functional element, being arranged on the mount substrate, with the cover substrate being a microstructured glass which is arranged on the mount substrate, and forms a cavity above the functional element, and with the bonding elements being located outside the cavity.
Abstract:
A method is for forming three-dimensional micro- and nanostructures, based on the structuring of a body of material by a mould having an impression area which reproduces the three-dimensional structure in negative form. This method includes providing a mould having a substrate of a material which can undergo isotropic chemical etching, in which the impression area is to be formed. An etching pattern is defined on (in) the substrate, having etching areas having zero-, uni- or bidimensional extension, which can be reached by an etching agent. A process of isotropic chemical etching of the substrate from the etching areas is carried out for a corresponding predetermined time, so as to produce cavities which in combination make up the impression area. The method is advantageously used in the fabrication of sets of microlenses with a convex three-dimensional structure, of the refractive or hybrid refractive/diffractive type, for forming images on different focal planes.
Abstract:
A method using an etchant and a laser for localized precise heating enables precise etching and release of MEMS devices with improved process control while expanding the number of materials used to make MEMS, including silicon-dioxide patterned films buried in and subsequently released from bulk silicon, as a direct write method of release of patterned structures that enables removal of only that material needed to allow the device to perform to be precisely released, after which, the bulk material can be further processed for additional electrical or packaging functions.
Abstract:
A directed energy source is applied to a portion of a material, creating at least one altered region and leaving at least one unaltered region. The material is exposed to an etchant which removes the at least one altered region leaving substantially all of the unaltered region.
Abstract:
Disclosed herein is a method of fabricating nano-components using nanoplates, including the steps of: printing a grid on a substrate using photolithography and Electron Beam Lithography; spraying an aqueous solution dispersed with nanoplates onto the grid portion to position the nanoplates on the substrate; depositing a protective film of a predetermined thickness on the substrate and the nanoplates positioned on the substrate; ion-etching the nanoplates deposited with the protective film by using a Focused Ion Beam (FIB) or Electron Beam Lithography; and eliminating the protective film remaining on the substrate using a protective film remover after the ion-etching of the nanoplates, and a method of manufacturing nanomachines or nanostructures by transporting such nano-components using a nano probe and assembling with other nano-components. The present invention makes it possible to fabricate the high-quality nano-components in a more simple and easier manner at a lower cost, as compared to other conventional methods. Further, the present invention provides a method of implementing nanomachines through combination of such nano-components and biomolecules, etc.
Abstract:
A method for generating a surface profile of a microstructure. The profile is processed to determine positions of at least two edges and an approximate center point of the profiled surface. Segments of points on the determined profile are fit to a straight line centered at the approximate center point. A standard deviation of the fitted points is measured. The length and position of the segment are varied until a minimum standard deviation is determined and the process is repeated for segments having different lengths. The point is determined from the longest segment having a standard deviation approximately equal to the minimum standard deviation of all of the segment lengths.
Abstract:
The present disclosure relates to a method for generating a three-dimensional microstructure in an object. In one embodiment, a method for fabricating a microscopic three-dimensional structure is provided. A work piece is provided that includes a target area at which the three-dimensional structure is to be fabricated. The target area has a plurality of virtual dwell points. A shaped beam is provided to project onto the work piece. The intersection of the shaped beam with the work piece defines a beam incidence region that has a desired shape. The beam incidence region is sufficiently large to encompass multiple ones of the virtual dwell points. The shaped beam is moved across the work piece such that different ones of the virtual dwell points come into it and leave it as the beam moves across the work piece thereby providing different doses to different ones of the virtual dwell points as the different dwell points remain in the beam incidence region for different lengths of time during the beam scan. In this way, a desired dose array of beam particles is applied onto the target area to form the three dimensional microstructure.
Abstract:
A method using an etchant and a laser for localized precise heating enables precise etching and release of MEMS devices with improved process control while expanding the number of materials used to make MEMS, including silicon-dioxide patterned films buried in and subsequently released from bulk silicon, as a direct write method of release of patterned structures that enables removal of only that material needed to allow the device to perform to be precisely released, after which, the bulk material can be further processed for additional electrical or packaging functions.