Abstract:
A direct digital x-ray imaging system includes a fiber optic scintillating plate in which aliasing and x-ray transmission problems are minimized.
Abstract:
A new scintillating optical fiber is used in an array as a scintillator plate for imaging with high energy radiation, particles and the like. The scintillating optical fiber has an inner plastic core fiber which is transparent to visible radiation and has an index of refraction of about 1.45 or greater. The inner plastic core fiber has a plastic cladding material which has an index of refraction less than that of the inner plastic core fiber. The inner plastic core fiber contains a polymeric matrix material; a metal moiety; and an organic quench-resistant fluorescent material. The scintillator plates are useful in producing high efficiency and high resolution radiographic systems for x-ray medical diagnosis or non-destructive inspection as well as non-destructive inspection with thermal neutrons. In medical x-ray applications, such as mammography, the need for lower doses of x-rays for a given image quality is met and exceeded by the higher detection efficiency of the scintillator plates and their associated electronic read-out system.
Abstract:
A method and apparatus for detecting the line of flight, point of entry and angle of entry of an energetic, ionizing particle uses a helical array of scintillating optical fibers.
Abstract:
An apparatus for detecting radioisotopes in fluids (e.g., in gas/liquid chromatography) comprises a bundle of scintillating optical fibres 12 extending along the interior of a conduit 10 through which a fluid may flow. The bundle of scintillating optical fibres has ends 14, 16 passing through the side of the conduit 10 to connect with light detecting means 18, 20. Other embodiments and methods of use are disclosed.
Abstract:
A high energy imaging system provides a "slotted" or "slot-shaped" or "rectangular cross-section" beam of illumination to intercept an annular region of an object of revolution as it is rotated. A detector array is located to intercept the illumination beam emanating from the object. The detector array includes an opto-electric transducer imaging a plurality of scintillating optical fiber or fiber bundles. The optical fiber or fiber bundles are located substantially parallel to each other with longitudinal axes substantially perpendicular to the direction of the illuminating radiation and parallel to the longitudinal axis of the object being imaged.
Abstract:
A system for simultaneously detecting nuclear radiation and pressure combines light signals from a radiation sensitive scintillating optical fiber with light signals from a pressure sensitive optical fiber. The scintillating fiber is coupled to a light transmitting optical fiber for long distance light transmission to a detector unit such as a photomultiplier tube. The concurrent detection of radiation and pressure of radiation and pressure is used to trigger an alarm signal.
Abstract:
A system is provided for measuring radiation, the system includes an optical fiber cable assembly coupled to one or more scintillation detectors, a data acquisition module for measuring an output generated by said one or more scintillation detectors and a cartridge module that is permanently engaged with said optical fiber cable assembly and removably engaged with said data acquisition module.
Abstract:
Disclosed herein are variations of megavoltage (MV) detectors that may be used for acquiring high resolution dynamic images and dose measurements in patients. One variation of a MV detector comprises a scintillating optical fiber plate, a photodiode array configured to receive light data from the optical fibers, and readout electronics. In some variations, the scintillating optical fiber plate comprises one or more fibers that are focused to the radiation source. The diameters of the fibers may be smaller than the pixels of the photodiode array. In some variations, the fiber diameter is on the order of about 2 to about 100 times smaller than the width of a photodiode array pixel, e.g., about 20 times smaller. Also disclosed herein are methods of manufacturing a focused scintillating fiber optic plate.
Abstract:
Interstitial brachytherapy is a cancer treatment in which radioactive material is placed directly in the target tissue of the affected site using an afterloader. The accuracy of this placement is monitored in real time using a urinary catheter that locates the radioactive material according to the radiation levels measured by sensors in the walls of the urinary catheter. A scintillator that is embedded in the walls of the urinary catheter produces light when irradiated by the radioactive material. This light is proportional to the level of radiation at each location. The light produced by each scintillator is carried through optical fibers and then converted to an electrical signal that is proportional to the light and the radiation level at each location. The radioactive material is located according to the plurality of electrical signals. This location can be used as quality control feedback to the afterloader.
Abstract:
A plastic scintillating fiber includes: a core containing a transparent resin having scintillating properties and at least one type of fluorescent substance that absorbs the scintillation light and converts the absorbed light into light having a wavelength longer than that of the absorbed light; a cladding layer covering an outer peripheral surface of the core and having a refractive index lower than that of the core; and an outermost peripheral layer covering an outer peripheral surface of the cladding layer and containing a compound of a heavy metal element. The core, the cladding layer, and the outermost peripheral layer are integrally formed.