Abstract:
A first electrical connector is configured to be removably coupled to a second electrical connector that includes a housing and a sleeve that depends from the housing. The first electrical connector includes a body having a longitudinal axis, an interface portion, and a circumferential groove formed in the interference portion. The groove includes a circumferential wall, a radial wall that extends from the circumferential wall, and a circumferential extension that extends from the radial wall. When the first connector is coupled to the second connector, the extension is snugly received in the sleeve to form an air-tight chamber between the sleeve and the interference portion. As the first connector is removed from the second connector, an air flow path is defined around an end of the sleeve in a space between the circumferential extension and the sleeve to allow air to enter the chamber to inhibit flashover.
Abstract:
A latching mechanism for joining separable insulated connectors employs a plurality of finger contacts to create an interference fit with an electrode probe of an elbow connector. The electrode probe enters a cylindrical grouping of the plurality of finger contacts and a projection causes an interference fit between the finger contacts and the electrode probe. The finger contacts latch the connectors together and require a removal force greater than the latching force required to latch the connectors. The latching mechanism provides a multi-point current path between an elbow connector and a power transmission or distribution apparatus and provides operator feedback to indicate the latching of the mechanism.
Abstract:
An electrical apparatus of an electric distribution power system includes an electrical device having a high voltage electrical terminal that may be energized, an exterior insulating housing, and an insulator. The exterior insulating housing surrounds and insulates the electrical device, and includes an opening through which the high voltage electrical terminal protrudes such that at least a portion of the high voltage electrical terminal is external to the exterior insulating housing. The insulator covers the electrical terminal and is attached to the exterior insulating housing such that no current flow path is provided through an interface between the insulator and the exterior insulating housing.
Abstract:
A grounding clamp provides a direct connection to ground between a power transmission or power distribution apparatus and a nearby ground plane. As a grounding clamp is being attached to the mating interface of a power transmission or power distribution apparatus, the angled gripping surfaces permit an operator to ground the spade from a distance of live-line tool's length from the frontplate of the power apparatus and apply the requisite pressure to the mating interface, providing an easier to attach grounding clamp and a more secure ground connection.
Abstract:
A separable insulated connector provides a current path for high-energy distribution between a power transmission or power distribution apparatus and an elbow connector. As gases and conductive particles exit the separable insulated connector during loadbreak switching, the gases and particles are re-directed away from a mating electrode probe and diverted along a path non-parallel to the electrode probe.
Abstract:
A housing for a current limiting fuse that includes a metal fuse element and a non-conductive filler material. The fuse element is configured to melt to create an open circuit when an applied current exceeds a threshold amount. The housing includes first and second cylindrical members. The first cylindrical member has an open end portion and the second cylindrical member has an integrally formed closed end portion and an open end portion configured to be attached to the open end portion of the first cylindrical member to close the housing. The housing also includes a fastening member configured to prevent the open end portion of the first cylindrical member from separating from the open end portion of the second cylindrical member when the fuse element melts.
Abstract:
A fusible switch disconnect device (100) includes a housing (104) adapted to receive at least one fuse (106) therein, and switchable contacts (172, 174, 178, 180) for connecting the fuse to circuitry.
Abstract:
An apparatus includes at least one Rogowski coil and a processor. The at least one Rogowski coil is positioned within an electrical power distribution network to detect a first traveling wave current caused by a fault on an electrical power transmission line of the network, generate a first signal indicative of detection of the first traveling wave, detect a second traveling wave current caused by the fault on the transmission line, and generate a second signal indicative of detection of the second traveling wave. The processor is adapted to receive the first signal and the second signal and to determine, based on the first signal and the second signal, where on the transmission line the fault occurred.
Abstract:
A liquid immersed surge arrester that protects electrical equipment includes a module assembly. The module assembly includes at least one varistor and a pre-impregnated composite around the at least one varistor. The liquid immersed surge arrester also includes contacts on opposite ends of the module assembly with which the module assembly is connected to electrical equipment to be protected and to electrical ground. The liquid immersed surge arrester also includes a tank that houses the module assembly and the contacts. A fault-tolerant protection device for protecting electrical equipment includes a surge arrester to protect electrical equipment from damage during periods of voltage above a normal operating range. The fault-tolerant protection device also includes a surge durable fuse element to disconnect the surge arrester after failure of the surge arrester to allow unprotected operation of the electrical system.
Abstract:
A device can include multiple light loads, where each light load includes at least one light source. The device can also include multiple switches coupled to the light loads. The device can further include a controller coupled to the switches, where the controller actively operates the switches multiple times within each cycle to control delivery of power to the light loads. Active operation of the switches by the controller is performed on a dynamic schedule, where the dynamic schedule is based on multiple environmental conditions, and where the controller bypasses a forward voltage of the light loads when actively operating the switches.