Abstract:
An electrical device of a network of electrical devices can include an auto- commissioning device having a transceiver and an auto-commissioning engine, where the transceiver communicates with an adjacent transceiver of an adjacent electrical device, where the auto-commissioning engine, based on communication between the transceiver and the adjacent transceiver, identifies and commissions the adjacent electrical device.
Abstract:
A testing circuit assembly can include a first variable resistive load configurable for a range of electrical resistances, where the first variable resistive load is configured to couple to at least one first ground fault circuit interrupter (GFCI) breaker and a current source. The testing circuit assembly can also include a first local controller coupled to the first variable resistive load, where the first local controller controls the first variable resistive load to simulate a range of fault currents, corresponding to the range of electrical resistances, flowing to the at least one first GFCI breaker to determine at least one actual trip point of the at least one first GFCI breaker. Each electrical resistance in the range of electrical resistances can correspond to a fault current in the range of fault currents.
Abstract:
A corrosion tracking system within an enclosure can include an electrical circuit through which a first current flows, where the first current creates a magnetic field. The system can also include a target component disposed proximate to the electrical circuit, where the magnetic field induces a number of second currents to flow within the target component. The system can further include a sensor that measures the plurality of second currents flowing within the target component to generate a plurality of measurements. The measurements can indicate whether the target component is experiencing corrosion.
Abstract:
A thermal monitoring system includes at least one of an infrared sensor and a plurality of infrared sensors arranged in an array. Each infrared sensor has a resolution including a plurality of pixels. A controller is configured to create a thermal image of an area to be monitored based at least in part on the plurality of pixels of each infrared sensor. A thermal monitoring assembly includes an electrical panel including a plurality of electrical components located within the electrical panel. The at least one of an infrared sensor and the plurality of infrared sensors arranged in an array, either alone or in combination with additional sensors, are located inside the electrical panel. Methods of monitoring various parameters including a temperature of the plurality of electrical components located inside the electrical panel are also provided.
Abstract:
An adapter for testing electrical equipment can include a first receptacle end having at least one first coupling feature, where the at least one first coupling feature is configured to couple to a power source and a first electrical device, where the first receptacle end is configured to receive from the power source at least one first test signal and send the at least one first test signal to the first electrical device. The adapter can also include a sensing device configured to receive at least one first response signal from the first electrical device, where the at least one first response signal is in response to and based on the first electrical device receiving the at least one first test signal.
Abstract:
A joint sensing system within an enclosure can include an electrical circuit through which a first current flows, where the first current creates a magnetic field, where the electrical circuit is disposed proximate to a joint of the enclosure. The system can also include a target disposed proximate to the electrical circuit, where the magnetic field induces a plurality of second currents to flow within the target. The system can further include a sensor that measures the plurality of second currents flowing within the target to generate a plurality of measurements. The plurality of measurements can indicate a width of the joint of the enclosure.
Abstract:
A control system for hazardous environments decreases flame paths, decreases punctures to the control system when installing interfaces, and increases safety. The control system may be characterized as a "one size fits all" controller that is able to automatically recognize a plurality of user interfaces. The controller has an enclosure to which the interfaces can be attached. The interfaces may interact with control electronics wholly contained in the enclosure using a variety of "wireless" mechanisms. Such mechanisms include reflecting light waves, infrared (IR) communication, radio-frequency identification, inductive coils, short-range wireless communication, camera images, piezoelectricity, and magnetism, and the like. The interfaces may include switches, indicator lights, smoke detectors, and the like.
Abstract:
A device can include multiple light loads, where each light load includes at least one light source. The device can also include multiple switches coupled to the light loads. The device can further include a controller coupled to the switches, where the controller actively operates the switches multiple times within each cycle to control delivery of power to the light loads. Active operation of the switches by the controller is performed on a dynamic schedule, where the dynamic schedule is based on multiple environmental conditions, and where the controller bypasses a forward voltage of the light loads when actively operating the switches.
Abstract:
A light fixture can include a housing comprising at least one wall that forms a cavity, wherein the housing complies with applicable standards for a hazardous environment. The light fixture can also include an antenna assembly disposed on an outer surface of the housing. The antenna assembly can provide communication with another device within the hazardous environment without compromising the applicable standards for the hazardous environment.
Abstract:
An electrical system can include a diagnostic device that generates a first test signal at a first time. The electrical system can also include at least one energy transfer link coupled to the diagnostic device, where the first test signal flows through the at least one energy transfer link at the first time. The electrical system can further include a portable electrical load coupled to the at least one energy transfer link. The electrical system can also include a monitoring device coupled to the at least one energy transfer link, where the monitoring device is disposed between the diagnostic device and the portable electrical load. The first monitoring device can receive the first test signal, where the monitoring device executes, in response to the first test signal, a test procedure on the portable electrical load. The portable electrical load is portable relative to the diagnostic device.