Abstract:
A chemical actinometer for determining the absolute level of exposure to ultraviolet light of a fluid to be treated for disinfection purposes. The actinometer includes a translucent sample cell through which the chemical actinometric fluid flows. The area of exposure of the actinometric fluid is controlled by allowing the ultraviolet light to pass through only a portion of the sample cell. A suitable actinometric fluid is a combination of iodide and iodate in a solution. The sample cell is positioned within an ultraviolet disinfection reactor at a position to receive ultraviolet light from the ultraviolet light source.
Abstract:
An apparatus for irradiation of a fluid with UV light includes a tubular body consisting of UV-permeable material. The body includes a fluid chamber and openings for passage of fluid. A UV source is provided to subject the chamber to the UV light. A wiper is centrally supported in the body to clean the inner surface of the body. Light baffles define an irradiated section of the chamber to prevent light penetration beyond the irradiated section while permitting the fluid to flow through. The apparatus is provided as a component in a housing having a modular design. The modules include a back cover for surface mounting. The body is mounted to the back cover. An inner cover is attached to the back cover. The inner cover includes the UV source and modular electronics. A front cover is attached to the inner and back cover.
Abstract:
A fluid treatment device, particularly useful for ultraviolet radiation treatment of fluids such as water. The device comprises a housing for receiving a flow of fluid. The housing has a fluid inlet, a fluid outlet, a fluid treatment zone disposed between the fluid inlet and the fluid outlet and at least one radiation source having a longitudinal axis disposed in the fluid treatment zone substantially transverse to a direction of the flow of fluid through the housing. The fluid inlet, the fluid outlet and the fluid treatment zone are arranged substantially collinearly with respect to one another. The fluid inlet has a first opening having: (i) a cross-sectional area less than a cross-sectional area of the fluid treatment zone, and (ii) a largest diameter substantially parallel to the longitudinal axis of the at least one radiation source assembly.
Abstract:
A cleaning system for a UV disinfection module having a pair of headers with a multiplicity of lamps extending therebetween including a cleaning plate having a multiplicity of openings therein, the openings having lamp wipers and arranged to substantially coincide with positions of the lamps to permit movement of the plate between the headers, a rotatable screw extending between the headers and through the plate, a motor operatively connected to rotate the screw, a screw adapter fixed to the cleaning plate at a rotatable screw opening in the plate and including a substantially cylindrical tube having opposed openings, one of the openings being aligned with the rotatable screw opening and a thread nut connected to each of the opposed openings, each opposed opening having a threaded central bore sized to threadingly engage threads on the rotatable screw, whereby rotation of the screw moves the cleaning plate between the headers.
Abstract:
Turbulent mixing in a UV system is increased by positioning one or more ring-shaped devices, such as washers, at one or more predetermined locations on the exterior surface of each lamp unit in the system. The washers may have the same or different diameters. Turbulent mixing is also increased by retaining the upstream end of each lamp unit in a ring-shaped device, alone or in combination with washers positioned on each lamp unit exterior surface as described above.
Abstract:
A radiation sensor having structure to remove fouling materials includes a sensor housing, and radiation transmissive structure within the housing and including a portion to be exposed to a radiation source. A radiation sensor is provided for receiving radiation from the transmissive structure. Structure is also provided for removing materials fouling the portion of the radiation transmissive structure to be exposed to the radiation source.
Abstract:
A method of cleaning fouling materials from a radiation module, the method comprising the steps of: (i) immersing at least a portion of the radiation module in a fluid; and (ii) subjecting the radiation module to vibration at a frequency sufficient to substantially inhibit fouling materials adhering to the at least one radiation source. A radiation module for use in a fluid treatment system comprising: a support member for mounting the module in the fluid treatment system; at least one radiation assembly extending from the support member; and a vibration generator associated with the at least one radiation assembly. The radiation module is self-cleaning and can take the form of a radiation source module or a radiation sensor module. Incorporation of the radiation source module in a fluid treatment system is also described.
Abstract:
An immersible and portable module for irradiating waste fluids and capable of in situ self cleaning including a first header capable of receiving and maintaining in position a multiplicity of ultraviolet light producing lamps.The module includes a second header capable of receiving and maintaining in position said multiplicity of lamps and having an opening to receive cleaning fluids wherein the multiplicity of lamps are connected to the headers. The second header has a multiplicity of cleaning fluid exit holes proximate the lamps to permit the cleaning fluids to flow into the opening and outwardly from the holes and into contact with the lamps.
Abstract:
A water purification system having a pre-filter, a series of germicidal radiation chamber filter units alternating with a series of mechanical filter units and having a flow measuring device affixed to the output part of a final mechanical filtering unit. The rate of flow through the series of alternating germicidal and mechanical filtering units being measured by the flow measuring device and in turn controlled by an electrically operated valve so as to keep the rate of flow, of water being purified, through the series of alternating germicidal and mechanical filters at some predetermined and optimal setting with respect to the efficaciousness of the germicidal filters.
Abstract:
A circular cleaning device which scours the external surface of an ultraviolet radiation tube, which acts as a radiation source for bacteria kill in ultraviolet radiation fluid sterilizers, removes deposits, which precipitate out of the sterilizable fluid, from the external surface of the ultraviolet radiation tube, or its surrounding shield, and thereby sustains the emanation of high intensity radiation flux from the tube into the fluid which is to be sterilized.