Abstract:
A device for introducing ozone uniformly into water flowing through a conduit for disinfecting the water. An ozone contacting vessel is provided and includes a downflow tube through which water is caused to flow. The downflow tube is positioned vertically within a diffusion chamber. Within the downflow tube are a plurality of layers of transversely extending porous elements that are in communication with a source of ozone to provide a relatively uniform distribution of fine ozone bubbles over the cross-sectional area of the downflow tube. The porous elements are carried by an ozone conduit that is substantially coaxially positioned within the downflow tube. Spacer members are provided to space the porous elements from the downflow tube wall, and the entire ozone distributor assembly can be easily removed form the downflow tube for servicing the porous elements and can then be easily reinstalled thereafter. The downflow tube can be a straight tube or it can be J-shaped, to convey ozonated water into downstream ozone reaction cells to permit oxidation or disinfection of the water being treated.
Abstract:
A gravity flow, single or multi-cell filter incorporating an integral backwash control chamber for enabling backwashing to occur without the need for backwash pumps. The backwash control chamber contains a volume of backwash liquid, and communicates with a source of pressurized backwash liquid through a float-controlled flow control valve in order to maintain a desired liquid level within the backwash control chamber during backwashing operations. The flow of backwash liquid from the backwash control chamber is controllable either by means of three-way valves interconnecting the backwash control chamber with the filter outlet chamber, or by wash water control gates within the backwash chamber that are adapted to selectively cover outlet openings to permit backwash flow to enter the filter outlet chamber.
Abstract:
A sedimentation process for the collection and removal of solid particles from a liquid includes a basin provided with a plurality of planar baffles or settler members each having opposite ends attached to support rods, with the latter obviating the need for any beams or the like, to support the lower edges of the settler members. Manipulation of an adjustment mechanism permits simultaneous alteration of the inclination of all of the settler members without halting operation of the process. Influent is directed into the basin through a plurality of ports spaced longitudinally of one side wall thereof to more evenly distribute the influent throughout the bottom expanse of the settler members. Preferably, the settler members comprise stretchable membranes with the support rods including a shiftable, lockable mechanism permitting quick installation and variation of the tension as applied to the settler members.
Abstract:
A disinfection reactor for disinfecting liquid, such as water from a water filtration plant, by exposing the liquid to ultraviolet light. The reactor includes a generally rectangular reactor vessel and two or more medium pressure ultraviolet lamps that extend within the reactor vessel in a direction transverse to the direction of liquid flow therethrough. The reactor vessel includes liquid guide surfaces that guide liquid to flow in a converging flow path having a reduced-area flow region in the vicinity of the ultraviolet lamps. The ultraviolet lamps are positioned spaced from and between the guide surfaces.
Abstract:
A device for introducing ozone uniformly into water flowing through a conduit for disinfecting the water. An ozone-contacting vessel is provided and includes a downflow tube through which water is caused to flow. The downflow tube is positioned vertically within a diffusion chamber. Within the downflow tube are a plurality of layers of transversely extending porous elements that are in communication with a source of ozone to provide a relatively uniform distribution of fine ozone bubbles over the cross-sectional area of the downflow tube. The downflow tube can be J-shaped, to convey ozonated water into downstream ozone reaction cells to permit oxidation or disinfection of the water being treated. An outlet seal plate is provided at the J-tube outlet to prevent backflow into the J-tube upon shutdown of the contactor cell containing the J-tube.
Abstract:
Apparatus and a method for disinfecting water by contacting the water with gaseous ozone. The device includes a series of treatment chambers that are interconnected serially by external transfer conduits, each transfer conduit including an introduction tap for introducing ozonated water into the water to be treated. The treated water flows sequentially from one chamber into the next. Hydrogen peroxide is added to the water as it enters a final chamber for final degasification of the water. Within each treatment chamber a mixing chamber is provided for additional intermixing and greater mass transfer of ozone with the water by alternately speeding up and slowing down the flow of the ozone-water mixture before the mixture is introduced downwardly into the respective chamber adjacent the lower wall thereof. An eductor and static mixer are provided to entrain and mix ozone and water to provide a sidestream of ozonated water for each of the several treatment chamber transfer conduits, and flow control valves are provided to permit regulation of the rate of flow of ozonated water for maximum desired disinfection. In another embodiment, direct diffusion of ozone into water flowing within the transfer conduits is effected by passing the ozone into ceramic, rod-type diffuser elements positioned within the conduits.
Abstract:
A multiple filter, gravity flow, liquid filtering apparatus includes a plurality of adjacent independent filter chambers with common influent and effluent passages surrounding a centrally located effluent control chamber and having provisions for backwashing at least one filter chamber with the effluent from companion filter chambers. The effluent control chamber preferably has two sections, a lower section which serves to collect filtrate from each of the surrounding filter chambers through a plurality of flow transfer ports which communicate with each filter chamber, and an upper section which houses equipment and controls for filtering and backwash operations. In one embodiment, the lower section includes a vertically disposed outlet conduit with an adjustable weir located at the open end of the conduit. The weir is used to adjust the liquid level in the lower section of the control chamber to control filtering and backwash operations. In a second embodiment, the effluent control chamber includes a specially designed pumped backwashing system in lieu of the adjustable outlet weir. The pump assembly is mounted on the floor of the upper section with associated flow distribution valves and pipes located in the lower section and communicating with the respective flow transfer ports of each filter chamber. The pumped backwashing system is designed to pump flows in the control chamber to individual filter chambers during a backwash event.
Abstract:
A tubular holder for an actinometric monitoring element for monitoring the irradiance of ultraviolet light within a liquid to be treated for microorganism control. The holder extends into the interior of a vessel or a pipeline that carries a fluid to be treated by exposure to ultraviolet light. A transparent end cap is carried at the end of the holder that is within the vessel or pipeline. Positioned within the holder is an actinometric monitoring element that can be either a transparent container for an actinometric solution or a photocell, each for sensing the irradiance of ultraviolet light emitted by light sources positioned within the vessel or pipeline. The holder is removably received in a sleeve that extends through the wall of the vessel or pipeline.
Abstract:
A chemical actinometer for determining the absolute level of exposure to ultraviolet light of a fluid to be treated for disinfection purposes. The actinometer includes a translucent sample cell through which the chemical actinometric fluid flows. The area of exposure of the actinometric fluid is controlled by allowing the ultraviolet light to pass through only a portion of the sample cell. A suitable actinometric fluid is a combination of iodide and iodate in a solution. The sample cell is positioned within an ultraviolet disinfection reactor at a position to receive ultraviolet light from the ultraviolet light source.
Abstract:
A coarse media flocculator utilizes buoyant media restrained against upward movement in a flocculator chamber whose cross-sectional area increases uniformly in the direction of vertical flow, thereby providing a uniformly tapering velocity gradient. The height of the media bed within the chamber is alterable, thereby changing its depth and cross-sectional characteristics within the tapered chamber. The velocity gradients of the flocculator can thus be changed independent of flow. The media restrainer comprises interlocked cooperating gratings each respectively joined to an opposite wall of the flocculator housing by a tracking mechainsm. Upon manipulation of a motor device, one grating is horizontally extended or retracted, producing a lowering or raising of the restrainer as its cross-sectional area is respectively enlarged or reduced. During this alteration of the area and elevation of the restrainer, which takes place in a smooth continuous manner, the cross-section and vertical height of the media bed constrained therebeneath are simultaneously varied, with a consequent adjustment of the flocculation parameters of the media bed.