Abstract:
A device that includes a revolving pulley around which an operating cable is rolled which runs inside a cover and a support device onto which the aforementioned pulley is rigidly mounted on the end of the rail, and equipped with stoppers at the end of the cover. It includes a flat cover with an opening for the assembly of the stoppers which include a tubular body fixed to the flat, insides which the end of the cover is held. The tubular body has a lower extension to be inserted into the opening of the flat cover which is in a V shape to prevent the tubular body from being released from the flat cover once it is inserted into the opening.
Abstract:
An opening and closing device opens and closes a sliding door by using a cable connected to the sliding door movably attached to a vehicle body. The opening and closing device has a base bracket, a motor, a transmission, a rotary drum, a first conduit fixed portion, a second conduit fixed portion, a first tension controller and a second tension controller. The base bracket is fixed to the vehicle body with bolts. The motor, the transmission, the rotary drum, the first and second conduit fixed portions and the first and second tension controllers are fixed to a disposition face of the base bracket. The first and second tension controllers are respectively disposed between the rotary drum and the first conduit fixed portion and between the rotary drum and the second conduit fixed portion, and applies tension to the cable fed from the rotary drum to take up the slack.
Abstract:
A vehicle door, wherein a drive unit for raising and lowering a glass plate is constructed so that a plurality of pulleys across which wires are laid are provided at upper and lower sides of a base panel. The glass plate is moved up and down by driving the wires, and the glass plate is prevented from moving in a vehicle inward direction when the door is closed. Wire fixing portions are prevented from being damaged by large upward and downward stroke movements of the glass plate Furthermore, the wires are prevented from slackening when the wires are driven and stopped by providing a supporting rod along a path of upward and downward movement of the glass plate, and a contact member which has no contact with the supporting rod. Trumpet-shaped guide portions are provided at hole edges of the wire fixing portions, and the V-shaped circumferential surfaces of a tensioner eliminates slack in the wires.
Abstract:
A device for adjusting a window regulator in a vehicle door, having a profiled base element (110) positonable on a lower section of the vehicle door and provided with a first elongate hole (111b) in its lower side and a second elongate hole (111a) in its upper side. A slider (112) slidingly moves within the base element (110) and includes a hole (113) aligned with the first elongate hole (111b). A screw extends through the hole (113) in the slider and the first elongate hole (111b) aligned therewith. A bolt (116) is fixedly attachable to the window regulator extending through the second elongate hole (111a) and includes a threaded rod engaging the threading of screw (114). The screw (114) can be turned from a first position, in which it does not engage the slider (112), to a second position, in which it engages the slider (112) with the first screw end (114b). The device provides for simple compensation of tolerances in connection with the vehicle door and for the window regulator.
Abstract:
A driving system for a garage door includes a track having an end fixed on an inside of a wall and has an open side that faces upward. A driving assembly is movably received in the track and driven by a motor. The driving assembly includes a connection member to which two ends of a power transferring member are connected. A U-shaped member is movably engaged with the track from an underside of the track and two sides of the U-shaped member are connected to the driving assembly. A link is pivotably connected between the U-shaped member and the garage door. The power transferring member reeves a gear which is rotatably connected to the track and the motor has a driving shaft which is conveniently extended through an opening of the track and engaged with an engaging hole of the gear.
Abstract:
A tensioner for a cable includes a fixing point and a free end. A first active part defines a first surface of the tensioner, and a second active part defines a second surface of the tensioner which is different from the first surface. The tensioner tensions the cable while following the displacement of the cable. One of the active parts acts as a tensioner on the cable, and the other of the active parts allows the free end of the cable tensioner to follow displacement of the cable, preventing the twisting of the tensioner or deformation of the cable. The tensioner can be employed with cable-driven window regulator for a vehicle.
Abstract:
An opening-and-closing device opens and closes a sliding door by using a cable connected to the sliding door movably attached to a vehicle body. The opening-and-closing device has a base bracket, a motor, a transmission, a rotary drum, a first conduit fixed portion, a second conduit fixed portion, a first tension controller and a second tension controller. The base bracket is fixed to the vehicle body with bolts. The motor, the transmission, the rotary drum, the first and second conduit fixed portions and the first and second tension controllers are fixed to a disposition face of the base bracket. The first and second tension controllers are respectively disposed between the rotary drum and the first conduit fixed portion and between the rotary drum and the second conduit fixed portion, and applies tension to the cable fed from the rotary drum to take up the slack.
Abstract:
A door driving-mechanism torque transmission (20, 40, or 50) for transmitting torque from a door-driving motor assembly, especially a geared motor (36), to a shaft (33) connected to a door panel (31). A driving component rotates around an axis and can be engaged with the door-driving motor assembly. A driven component rotates around another axis and can be engaged with the shaft. A bearing assembly accommodates both components mounted on separated axes of rotation. There is a coupling connection (2) between both components. The object is to promote smooth operation and decrease frequency of repair. The bearing assembly (4 or 51) is accordingly provided with a driving-component bearing half (5 or 52) that the driving component (1) is mounted on and with, separated therefrom, a driven-component bearing half (6 or 53) that the driven component (3) is mounted on. The bearing halves (5 & 6 or 52 & 53) are connected elastically for the purpose of attenuating torsional vibrations and impacts. The invention also concerns a motorized door-driving mechanism provided with such a torque transmission as well as a door provided therewith.
Abstract:
An automotive vehicle door has a glass window that is raised and lowered by a window regulator that includes a roller cable assembly (15). The roller cable assembly (15) has a rolled section guide rail (18) and a bracket assembly (16) at the lower end portion of the glass window that runs on an L-shaped flange (36) of the guide rail (18). The roller cable assembly (15) includes upper and lower roller assemblies (28 and 30) at the respective upper and lower ends of guide rail (18) and a cable (20) that is trained on rollers (22 and 24) of the roller assemblies and on a drive roller (26) that is driven by an electric motor (32). Each roller assembly includes a base (42) that is slideably attached to the guide rail (16) and a detachable cap pin (44) that attaches the guide roller to the base (42).
Abstract:
A window lifter comprises a cable, a window linkage driven by the cable, a fixed device and a cable redirecting device. The cable redirecting device is rotatably mounted on the fixed device and adapted to automatically lock onto the fixed device upon reaching a predetermined angular position. In addition, the cable redirecting device has a cable guiding portion which is not a figure of revolution about the axis of rotation relative to the fixed device. This window lifting mechanism provides a simple structure with few elements. Its assembly is also simple: the cable-redirecting device is rotatably mounted on the fixed device; it is thereafter rotated for tensioning the cable and then locked in a position where the cable is tensioned.