Abstract:
A support post includes an inner post that supports rotation of an outer post. The inner post includes a journal assembly that supports and facilitates rotation about a central axis. The journal assembly that supports the outer post on the inner post includes a single ball bearing disposed along the axis of rotation. The inner post is fixed and supports a central post on which the ball bearing is supported. The outer post includes a sleeve that fits over the ball bearing and the central post. Support of the outer post along the central axis provides for improved mounting and gate support. An actuator can be utilized to automatically or remotely open the gate. The actuator is disposed within the inner post that drives rotation of the outer post. The outer post remains supported by the journal assembly and is rotated by the actuator with the inner post.
Abstract:
A powered sliding device includes a wire drum (16) connected to a vehicle sliding door (11) through wire cables (18, 19), a motor (14) for rotating the wire drum, a clutch mechanism (25) provided between the motor and the wire drum, a rotational member (85) rotated integrally with the wire drum, detection apparatus (86) for detecting the rotation of the rotational member, and a housing (74). The housing includes a first space (76) accommodating the wire drum and communicating with the outside of the housing through the wire cables and a second space accommodating the rotational member and the detection apparatus, and a housing body (73) provided between the first space and the second space which separates the first space and the second space.
Abstract:
An opening/closing apparatus for a vehicle, which has a door-lock mechanism, is provided. An output of a motor unit is transmitted to a drum having a planetary gear mechanism, and the slide door of the vehicle is driven by an open-side cable and a close-side cable wound around the drum. A closer cable of the door-lock mechanism is coupled to a carrier of the planetary gear mechanism, and coupled to a latch of the door-lock mechanism via a coupling link. The coupling link is constituted as a toggle mechanism so as to regulate the rotation of the latch by the traction force of the closer cable until the latch is rotated toward a full latch direction from an unlatch position. When the regulation of the latch by the toggle mechanism is released, the latch is rotationally driven toward the full latch direction due to the rotation of the carrier.
Abstract:
A sliding wall-mounted interior door system that includes a telescoping door actuating mechanism that is attached to the upper portion of the door, and a roller assembly that extends horizontally from the wall and engages a track in the lower portion of the door. The door actuating system is designed so that the movement of one of the door panels simultaneously moves the other door panel in the opposite direction. The actuating mechanism is designed so that a gearing assembly within the actuating mechanism moves laterally when the door system is moved between the open and closed positions.
Abstract:
An adjusting system of a motor vehicle for the adjustment of a closing part is disclosed. The closing part may be a rear flap, a trunk deck, a sliding or swinging door. The closing part may be adjustable between an opened position and a closed position along a setting range. A body opening of a motor vehicle body is closed in the closed position by a closing part. The adjusting system uses at least two springs to effect the closing. The two springs may be selectively operated over a range of operation settings.
Abstract:
The invention relates to a servo drive comprising an electromechanical energy converter, which has a rotatably mounted disc rotor for generating a torque and a stepping up mechanism that is connected downstream of the disc rotor, for coupling the disc rotor to an output element and for stepping up the torque that acts on the disc rotor and comprising a locking mechanism that locks a rotational displacement of the output element, when a torque is introduced on the output side. According to the invention, the locking mechanism comprises a coil spring which can be radially expanded and compressed and which extends around the outer periphery of the stepping up mechanism.
Abstract:
A support post includes an inner post that supports rotation of an outer post. The inner post includes a journal assembly that supports and facilitates rotation about a central axis. The journal assembly that supports the outer post on the inner post includes a single ball bearing disposed along the axis of rotation. The inner post is fixed and supports a central post on which the ball bearing is supported. The outer post includes a sleeve that fits over the ball bearing and the central post. Support of the outer post along the central axis provides for improved mounting and gate support. An actuator can be utilized to automatically or remotely open the gate. The actuator is disposed within the inner post that drives rotation of the outer post. The outer post remains supported by the journal assembly and is rotated by the actuator with the inner post.
Abstract:
The invention relates to a drive unit for automatically actuating a tailgate of a motor vehicle. Connecting the drive unit (4) to the vehicle door (1) or to a transmission device (6) by means of an output shaft (5), said transmission device executing a pivoting movement which corresponds to the pivoting movement of the vehicle door (1), and the drive unit (4) comprising at least one first sensor device (7), which can be connected to an electronic evaluation device (21) and serves to detect the respective angular position of the vehicle door (1). In order to make use of the advantages of an incrementally operating position measurement system of the vehicle door (1), in which, recalibration is necessary not only after the end positions of the vehicle door (1) are reached following a power cut. The invention proposes dividing the entire pivot angle (à) of the vehicle door (1) into at least three successive zones (pivot angle ranges) (à1-à4), it being possible to determine the individual pivot angle ranges (à1-à4) by means of a first sensor device (7), which is suitable for detecting absolute values. The pivot angle of the vehicle door within the individual zones (à1-à4) is then detected with the aid of a second sensor device (8), which comprises at least one incrementally operating measured value detector.
Abstract translation:本发明涉及一种用于自动启动机动车辆后挡板的驱动单元。 通过输出轴(5)将驱动单元(4)连接到车门(1)或传动装置(6),所述传动装置执行对应于车门的枢转运动的枢转运动( 1),并且所述驱动单元(4)包括至少一个第一传感器装置(7),其可以连接到电子评估装置(21)并且用于检测车门(1)的各个角位置。 为了利用车门(1)的增量操作位置测量系统的优点,其中不仅在断电之后到达车门(1)的结束位置之后,重新校准是必要的。 本发明提出将车门(1)的整个枢转角(à)分成至少三个连续的区域(枢轴角度范围)(à-1-à4),可以确定各个枢转角度范围 -a 4)通过适合于检测绝对值的第一传感器装置(7)。 然后借助于包括至少一个递增操作的测量值检测器的第二传感器装置(8)检测车厢门在各个区域(à-à-4)内的转动角度。
Abstract:
A power closure actuator especially suitable for use in powering various automotive closure devices. The actuator includes a brushless pancake electric motor having an output shaft; a sun gear on the output shaft; a plurality of compound planet gears each having a large diameter lower portion meshingly engaging the sun gear and a small diameter upper portion; a ring gear surrounding and meshingly engaging the small diameter upper portions of the planet gears, and a cable drum splined to the ring gear. A mounting plate positioned in overlying confronting relation to the flat upper face of the motor mounts a plurality of planet shafts extending upwardly from the mounting plate in circumferentially spaced relation to the motor output shaft with a compound planet gear journaled on each planet shaft.
Abstract:
A drive arrangement for a motor vehicle door or hatch which can be moved by a motor with a planet gear and a brake device with a brake. The brake device has a brake drive which is separate from the drive which drives the drive shaft and the brake is able to be moved at least from one of two positions into the other of the two positions by the brake drive. The brake can be an arc-shaped clip pivotally supported by a pivot axle with an inner periphery which is matched to an outer periphery of an element of the planet gear. The brake can be combined with the brake drive as an eddy current brake or can be operated by a further gearing or use of a permanent magnet with which an electromagnet is able to interact.