Abstract:
A dual containment system is taught for adding sterile or caustic chemical, pharmaceutical, and biological fluids to and withdrawing them from a container. Included is a dual containment enabling fitting having a set of small diameter barbs at each end of a hollow conduit and a set of enlarged inner barbs at each end of a raised portion at the center of the hollow conduit. A port plate with a barbed spout is affixed to an aperture on the container. Also included is a dip tube with one end attached to a small diameter barb on the fitting and the other end extending into the container through the port plate spout. A connecting sheath encompasses the external portion of the dip tube and is attached at one end to a large diameter barb on the fitting and at the other end to the barbed spout. This creates a secondary containment chamber between the dip tube and the connecting sheath. The fitting may also be connected in series with a distal similarly functioning fitting creating a secondary containment chamber that allows the dual containment transfer of fluids. The secondary containment chamber prevents leakage and contamination and may be used for coaxial fluid flow, to effect a gas exchange with the fluid contents, and to cool or heat the fluid.
Abstract:
A connector means for conveying fluid from a supply source to a delivery location, said connectors having one conduit extending to the supply source and another conduit extending to the delivery location. Each terminal part has a cylindrical housing with a closed end to which the conduit is joined, and having an opposite operable end which is closed by a penetrable barrier. The barrier and closed end of the housing define an interior environment safe from external contaminants. A male tubular coupler is in one housing, a female tubular coupler is in the other housing, and a penetrator element is disposed around one of the tubular connectors. The penetrable barriers have a film of covered adhesive. The exposed adhesive films are placed in face to face contact to coaxially align the housing parts and bond the barrier membranes to exclude the environment. The penetrator element pierces the adhering barriers by either moving the penetrator element from one housing into the coaxially aligned housing, or by telescoping the housing cylinders so that the adhering barriers are contacted by the fixed penetrator element. The male tubular connector then engages the female tubular connector within a protected environment to effect connection between the supply source and the delivery location.
Abstract:
An aseptic joint has a sealing gasket interposed between the flanges of two pipe ends, there being a rubber ring around the gasket to form an annular steam chamber between the rubber ring and the OD of the gasket, and there being means including a steam inlet and outlet nipple with a dam between for continuously circulating steam throughout the length of the steam chamber. A clamping ring acts on the flanges of the two pipe ends to engage the gasket and rubber ring therebetween, the clamping ring having a slot through which the steam nipple projects.
Abstract:
A sanitary fluid transport coupling can include a plurality of fluid conduits, each fluid conduit having a distal end and a proximal end, a support element adapted to secure a spaced relationship between the plurality of second conduits at the distal end of the plurality of fluid conduits, and an overmolded element disposed adjacent the support element. The overmolded element can form a fitting that can form a fluid connection with another fluid conduit, fluid container, or isolated environment.
Abstract:
A coupling member for a closed fluid transfer system includes a housing having a fluid connection and a coupling side. The housing includes a longitudinal axis extending from the fluid connection toward the coupling side and a spike having a fluid opening. The fluid opening is arranged in an end portion of the spike facing the coupling side. A sealing member receptacle is arranged in the housing on the coupling side, and a sealing member is arranged in the sealing member receptacle. The housing includes a housing portion that at least partially surrounds the sealing member receptacle and a threaded portion. The coupling housing with the sealing member is guided by a guiding structure and movable in the direction of the longitudinal axis via the threaded portion between a position with maximum distance to the fluid connection and a position with minimum distance to the fluid connection.
Abstract:
An aseptic coupling arrangement can include a first coupling device and a second aseptic coupling device. In one embodiment, the first and second coupling devices are substantially similar, each having a main body defining a front face and a fluid passageway therethrough. A first connecting feature disposed on the main body of each coupling device may be provided for aligning and coupling the aseptic devices together. Each coupling device may also include a sealing member received in the main body and a membrane removably coupled to the main body front face to cover the sealing member. The first aseptic coupling device may also include a rotatable protective cover that is removably attached to the main body and connected to the membrane. In one embodiment, the removal of the protective covers away from two coupled main bodies, in a direction parallel to the front faces, causes removal of the membranes.
Abstract:
The present disclosure discloses a PEX-A pipe, the pipe wall of the PEX-A pipe includes a PEX-A antibacterial layer, a PEX-A main body layer, and an anti-ultraviolet (UV) layer that are sequentially attached from inside to outside. The anti-UV layer is attached to the outer side of the PEX-A main body layer to enhance the weather resistance and aging resistance and prolong the service life of the pipe. The PEX-A antibacterial layer is attached to the inner side of the PEX-A main body layer to inhibit the growth and reproduction of bacteria in water in the pipe and improve the quality of drinking water.
Abstract:
A coupler for aseptically coupling and controlling fluid communication between at least two components. The coupler includes a first connector housing with an inner concave surface. A first connector extends from the top of the first connector housing and is adapted to connect to a first component. A first connector conduit extends through the first connector and into the first connector housing so as to define a fluid passageway to an inner opening on the inner surface of the first connector housing. A rotary valve is located within an inner cavity of the first connector housing and includes at least two rotary valve segments. The rotary valve segments are configured to rotate within the cavity. At least one of the rotary valve segments includes a fluid conduit extending through the at least one rotary valve segment.
Abstract:
Some fluid coupling devices described herein are configured for use in fluid systems for purposes of providing a single-use, aseptic disconnection functionality that substantially prevents fluid spillage when being disconnected. In some embodiments, the coupling portions cannot be functionally reconnected to each other after being disconnected from each other.
Abstract:
Some fluid coupling devices described herein are configured for use in fluid systems. For example, some embodiments described in this document are single-use, aseptic fluid coupling devices that can be coupled to create a sterile flow path therethrough. Some such aseptic couplings are genderless couplings such that two identical aseptic couplings can be coupled together.