Abstract:
A portable spectrophotometer is disclosed which is provided with a holding case accommodating opto-mechanical color-reading devices and an electronic control device provided with a microprocessor having data and program memories. The spectrophotometer further includes a power source which enables its self-sustained field use.
Abstract:
A manual device for the detection of photometric data which includes a measuring head to illuminate a measuring surface and to detect the light reflected. The measuring light captured by the measuring head is spectrally decomposed by a monochromator containing a diffraction grating. The intensity of the light exiting through an outlet diaphragm is detected by a photodetector. The spectral position of the measuring light is set by a drive motor rotating a grating shaft connected with the holder of the diffraction grating. From the spectra detected, densitometric and colorimetric data are calculated by a computer, which together with the spectra determined, may be displayed on a display field.
Abstract:
A color signature sensor for color recognition or discrimination utilizing a spectral analysis system for use as a process control for automation and on-line quality assurance. An object to be observed is illuminated by a suitable light source, light collected from the object under examination is routed into a monochromator. The output of the monochromator is fed to an analog-to-digital converter and analyzed by a microprocessor.
Abstract:
An improved color sensor is provided having two sources of illumination, one source being modulated on and off while the other source remains on. Data taken while the modulated source is on is compared with data taken while the modulated source is off to compute the effective fluorescence of the sample. A corrected color spectrum can then be determined for a defined source.
Abstract:
Color is synthesized by dispersing a beam of light to form a spectrum, effectively blocking a portion of the spectrum with a mask, and recombining the light energies of the unblocked portion(s) of the spectrum to synthesize the color.
Abstract:
A scene is scanned with several different frequency light beams, emitted for example, from a mixed gas laser. The scattered light returned from the surfaces of the objects in the scene is detected. Comparing the phase of the returned light with the emitted light provides range information. The amplitudes of the signals of the various different frequency light beams are logically combined to provide the color at each point of the various surfaces within the scene. From the combined range and color information machine analysis of the scene can be made so that the objects in a cluttered scene can be recognized by the machine.
Abstract:
The colors of individual picture elements in a fabric pattern design are encoded by comparing the level of transmittance or reflectance of the picture element at preselected wavelengths with stored values representing a reference color to generate a multibit code indicative of the color of the picture element. A comparator used for this purpose incorporates an error either proportional to the wavelength or of constant value so that the output of the comparator will indicate identity with the stored value if the input value for the picture element is within a certain range of the stored value.
Abstract:
A METHOD FOR THE CHROMATIC ANALYSIS OF AN OBJECT INCLUDING FOCUSING A BEAM OF LIGHT FROM THE OBJECT ONTO A CONCAVE DIFFRACTION GRATING WHERE AN IMAGE IS FORMED, THE BEAM IS THEN DIRECTED TO A MASKED SPHERICAL MIRROR HAVING AT LEAST ONE APERATURE THEREIN, WHICH THEREBY SELECTS AT LEAST ONE BAND OF WAVELENGHTS WHICH IS REFLECTED ONTO A RECEIVING SURFACE. A CHROMATIC ANALYSIS DEVICE OF TO THE PRIMARY COLORS AND THE IMAGE IS RECONSTITUTED ON TO THE PRIMARY COLORS AND THE IMAGE IS RECONSTITUTED ON
THE SCREEN OF AN ELECTRON BEAM TUBE. A PLURALITY OF LENSES ARE DISPOSED BETWEEN THE MASKED MIRROR AND THE SCREEN FOR FOCUSING THE RECONSTITUTED IMAGE THEREON. THE DEVICE MAY BE USED FOR SPECTROPHOTOMETRY WHEREIN THE FOCUSING DEVICE EMPLOYED IS AN APERATURED DIAPHRAGM WITH A SPHERICAL MIRROR. THROUGHOUT, THE FOCUSING DEVICE AND THE MASKED MIRROR ARE LOCATED ON THE ROWLAND CIRCLE OF THE DIFFRACTION GRATING.