Abstract:
The present invention relates to a luminescence measuring device that includes a holder that holds a container for containing a sample, a plate member that holds the holder, a light detector that detects luminescence in the sample, and has a light receiving surface facing a bottom surface of the container, a first temperature control unit that performs control of a temperature of the light detector, and a ventilator that sends air to the light receiving surface of the light detector. The first temperature control unit may be provided on a side face of the light detector, and provided with a flow path therein. The air sending may be performed via the flow path in the first temperature control unit, so that the air having the same temperature as that of the light detector is sent to the light receiving surface.
Abstract:
A system for detecting gas leaks and determining their location and size. A data gathering portion of the system utilizes a hub and spoke configuration to collect path-integrated spectroscopic data over multiple open paths around an area. A processing portion of the system applies a high resolution transport model together with meteorological data of the area to generate an influence function of possible leak locations on gas detector measurement paths, and applies an inversion model to the influence function and the spectroscopic data to generate gas source size and location.
Abstract:
An optical absorption gas sensor has an LED light source and a photodiode light detector, a temperature measuring device for measuring the LED temperature and a temperature measuring device for measuring the photodiode temperature. The sensor is calibrated by measuring the response of photodiode current at zero analyte gas concentration and at a reference analyte gas concentration. From these measurement, calibration data taking into account the effect of photodiode temperature on the sensitivity of the photodiode and, independently, the effect of changes in the spectrum of light output by the LED on the light detected by the photodiode with LED temperature can be obtained. Calibration data is written to memory in the gas sensor and in operation of the gas sensor, the output is compensated for both LED and photodiode temperature. The LED and photodiode can therefore be relatively far apart and operate at significantly different temperatures allowing greater freedom of optical pathway design.
Abstract:
The present invention relates to a method for controlling a spectrometer for analyzing a product, the spectrometer including a light source including several light-emitting diodes having respective emission spectra covering in combination an analysis wavelength band, the method including steps of: supplying at least one of the light-emitting diodes with a supply current to switch it on, measuring a light intensity emitted by the light source by measuring a current at a terminal of at least another of the light-emitting diodes maintained off, determining, according to each light intensity measurement, a setpoint value of the supply current of each diode that is on, and regulating the supply current of each diode that is on so that it corresponds to the setpoint value.
Abstract:
The present invention relates to luminescence detection with respect to a substance contained in a sample. In particular, it relates to a weak luminescence detection device adapted to detect chemiluminescence and bioluminescence of the substance contained in the sample with high sensitivity and high precision.
Abstract:
An oxygen sensing system including an oxygen sensor, a microprocessor and one or more additional sensors for sensing parameters associated with the environment or with the oxygen sensor, accounts for one or more sensed conditions when calculating oxygen levels. The one or more sensors may sense conditions associated with environmental effects or effects of use that may cause the oxygen sensor to degrade over usage or over time. A baseline amplification and measurement circuit coupled to the oxygen sensor may enable the sensor to operate less frequently or for shorter periods of time, thereby increasing the life span, calibration hold time of the sensor, and reducing power requirements.
Abstract:
Systems and methods for performing measurements of one or more materials are provided. One system is configured to transfer one or more materials to an imaging volume of a measurement device from one or more storage vessels. Another system is configured to image one or more materials in an imaging volume of a measurement device. An additional system is configured to substantially immobilize one or more materials in an imaging volume of a measurement device. A further system is configured to transfer one or more materials to an imaging volume of a measurement device from one or more storage vessels, to image the one or more materials in the imaging volume, to substantially immobilize the one or more materials in the imaging volume, or some combination thereof.
Abstract:
A device for measuring the fluorescence of a medium having a radiation source, an emission-receiving element and an optical imaging element arranged on the sensor side of the optical imaging element, and a scattering-receiving element arranged on the sensor side of the optical imaging element and in which the radiation source, the imaging element and the emission-receiving element are aligned and configured relative to one another so that the medium present on the medium side of the imaging element can be illuminated by radiation from the radiation source, and the emission intensity of the medium radiation emitted by the medium based on fluorescence can be detected with the emission-receiving element. To provide a device for measuring the fluorescence of a medium which has an increased reliability in measuring the fluorescence, temperature compensation is performed relative to the temperature of the medium and/or at least one of the receiving elements.
Abstract:
Systems and methods for performing measurements of one or more materials are provided. One system is configured to transfer one or more materials to an imaging volume of a measurement device from one or more storage vessels. Another system is configured to image one or more materials in an imaging volume of a measurement device. An additional system is configured to substantially immobilize one or more materials in an imaging volume of a measurement device. A further system is configured to transfer one or more materials to an imaging volume of a measurement device from one or more storage vessels, to image the one or more materials in the imaging volume, to substantially immobilize the one or more materials in the imaging volume, or some combination thereof.