Abstract:
Multiple Array Management Functions (80) included in controller (30) are connected to multiple redundancy groups (40) over a storage area network (SAN), such as a fiber-channel based SAN (50). The multiple Array Management Functions share management responsibility of the redundancy groups, each of which typically includes multiple resources spread over multiple disks (45). The AMFs provide concurrent access to the redundancy groups for associated host systems. When a host requests an AMF to perform an operation on a resource, the AMF synchronizes with the other AMFs sharing control of the redundancy group that includes the resource to be operated on, so as to obtain a lock on the resource. While performing the operation, the AMF send replication data and state information associated with the resource such that if the AMF fails, any of the other AMFs are able to complete the operation and maintain data reliability and coherency.
Abstract:
A storage subsystem and a storage controller adapted to take advantage of high data transfer rates of fibre channels while offering enhanced reliability and availability and capable of connecting with a plurality of host computers having multiple different interfaces. A loop is provided to serve as a common loop channel having fibre channel interfaces. Host interface controllers (HIFC) connected to host computers having different interfaces permit conversion between the fibre channel interface and a different interface as needed. Control processors, shared by the host interface controllers, each reference FCAL (fibre channel arbitrated loop) management information to capture a frame having an address of the processor in question from among the frames passing through the loop. I/O processing is then carried out by the controller in accordance with a range of logical unit numbers (LUN) set in the captured frame.
Abstract:
A method and apparatus are disclosed for dynamically reconfiguring a computing system. The method comprises detecting a predetermined condition triggering a reconfiguration of the computing system, and dynamically reconfiguring a signal path affected by the condition from a first mode to a second mode responsive to detecting the condition. The apparatus is a computing system, comprising: a plurality of I/O switches, a crossbar switch, a plurality of signal paths, and a system controller. Each signal path is defined by an I/O switch and the crossbar switch. The system controller is capable of detecting a predetermined condition triggering a reconfiguration, and dynamically reconfiguring at least one of the signal paths affected by the condition from a first mode to a second mode.
Abstract:
An external storage system has a storage unit (500) for storing data and a plurality of storage controllers (200, 400) for controlling data transfer between an upper level system (100) and the storage unit. Each storage controller has a data buffer (240, 440) for temporarily storing data and a controller (250, 450) for controlling the operation of the storage controller. The external storage system has a management memory (310) for storing management information of the plurality of storage controllers each of which accesses this memory to monitor the operation states of other storage controllers. The external storage system has a first storage controller for processing an input-output request from the upper level system and a second storage controller for standing by for backup for a failed storage controller. In accordance with load distribution information stored in the management memory, the process to be executed by the first storage controller is partially executed by the second storage controller to improve the performance of the whole external storage system.
Abstract:
An apparatus includes a first bus, a second bus, and a storage module having a first and second output with the first output being connected to the first bus and a second output being connected to the second bus. A first buffer storage and a second buffer storage in which the first buffer storage is connected to the first bus and the second buffer storage is connected to the second bus. The second buffer storage includes an error correction module. First and second network adapters are connected to the first and second buses respectively. The first network adapter also includes a connection to the first buffer. A processor in the apparatus includes a first processor circuitry for transferring the data using a first path through the first output in the storage module to the first buffer storage and from the first buffer storage to the first network adapter. A second processor circuitry is for transferring data using a second path through the second output to the second buffer storage through the error correction module and from the second buffer storage to the second network adapter, wherein the second processor circuitry is responsive to an error in the storage module.
Abstract:
This fault-tolerant computer system employs multiple (for example, three) identical CPUs executing the same instruction stream, with multiple (for example, two) memory modules which in their address space of the CPUs store duplicates of the same data. The CPUs are loosely synchronized, as by detecting events such as memory references and stalling any CPU ahead of the others until all execute the respective function simultaneously. Interrupts are synchronized by ensuring that all CPUs implement the interrupt at the same point in their instruction stream. Memory references via the separate CPU-to-memory busses are voted at the three separate ports of each of the memory modules. I/O functions are implemented using two identical I/O busses, each of which is separately coupled to only one of the memory modules. A number of I/O processors are coupled to both I/O busses. I/O devices are accessed through a pair of redundant identical I/O processors, but only one is designated to actively control a given I/O device. In case of failure of one I/O processor, however, an I/O device can be accessed by the other one without system shutdown, i.e., by merely redesignating the addresses of the registers of the I/O device under instruction control.
Abstract:
A computer system in a fault-tolerant configuration employs three identical CPUs executing the same instruction stream, with two identical, self-checking memory modules storing duplicates of the same data. Memory references by the three CPUs are made by three separate busses connected to three separate ports of each of the two memory modules. The three CPUs are loosely synchronized, as by detecting events such as memory references and stalling any CPU ahead of others until all execute the function simultaneously; interrupts can be synchronized by ensuring that all three CPUs implement the interrupt at the same point in their instruction stream. Memory references via the separate CPU-to-memory busses are voted at the three separate ports of each of the memory modules. I/O functions are implemented using two identical I/O busses, each of which is separately coupled to only one of the memory modules. A number of I/O processors are coupled to both I/O busses.
Abstract:
A computer system in a fault-tolerant configuration employs multiple identical CPUs executing the same instruction stream, with multiple, identical memory modules in the address space of the CPUs storing duplicates of the same data. The multiple CPUs are loosely synchronized, as by detecting events such as memory references and stalling any CPU ahead of others until all execute the function simultaneously; interrupts can be synchronized by ensuring that all CPUs implement the interrupt at the same point in their instruction stream. Memory references via the separate CPU-to-memory busses are voted at the three separate ports of each of the memory modules. I/O functions are implemented using two identical I/O busses, each of which is separately coupled to only one of the memory modules. A number of I/O processors are coupled to both I/O busses. I/O devices are accessed through a pair of identical (redundant) I/O processors, but only one is designated to actively control a given device; in case of failure of one I/O processor, however, an I/O device can be accessed by the other one without system shutdown, i.e., by merely redesignating the addresses of the registers of the I/O device under instruction control.
Abstract:
A computer system in a fault-tolerant configuration employs multiple identical CPUs executing the same instruction stream, with multiple, identical memory modules in the address space of the CPUs storing duplicates of the same data. The multiple CPUs are loosely synchronized, as by detecting events such as memory references and stalling any CPU ahead of others until all execute the function simultaneously; interrupts can be synchronized by ensuring that all CPUs implement the interrupt at the same point in their instruction stream. Memory references via the separate CPU-to-memory busses are voted at the three separate ports of each of the memory modules. I/O functions are implemented using two identical I/O busses, each of which is separately coupled to only one of the memory modules. A number of I/O processors are coupled to both I/O busses. I/O devices are accessed through a pair of identical (redundant) I/O processors, but only one is designated to actively control a given device; in case of failure of one I/O processor, however, an I/O device can be accessed by the other one without system shutdown, i.e., by merely redesignating the addresses of the registers of the I/O device under instruction control.