Abstract:
A microelectromechanical device structure comprises a supporting structure wafer (310). A cavity electrode (130) is formed within a cavity in the supporting structure wafer. The cavity electrode forms a protruding structure from a base of the cavity towards the functional layer (300), and the cavity electrode is connected to a defined electrical potential. The cavity electrode comprises a silicon column within the cavity in the supporting structure wafer, which is partially or entirely surrounded by a cavity. One or more cavity electrodes may be utilized for adjusting a frequency of an oscillation occurring within the functional layer.
Abstract:
Voltage-controlled oscillation (100) is described. In an apparatus therefor, an inductor (120) has a tap and has or is coupled to a positive-side output node (105) and a negative side output node (106). The tap is coupled to receive a first current. A coarse grain capacitor array (130) is coupled to the positive-side output node (105) and the negative side output node (106) and is coupled to respectively receive select signals (168). A varactor (140) is coupled to the positive-side output node (105) and the negative side output node (106) and is coupled to receive a control voltage (143). The varactor (140) includes MuGFETs (141, 142). A transconductance cell (150) is coupled to the positive- side output node (105) and the negative side output node (106), and the transconductance cell (150) has a common node (107). A frequency scaled resistor network (160) is coupled to the common node (107) and is coupled to receive the select signals (168) for a resistance for a path for a second current.
Abstract:
VLSI distributed LC resonant clock networks having reduced inductor dimensions as well as simplified decoupling capacitances that are obtained by including one or more compensation capacitors. A compensation capacitor can be added in parallel with a clock capacitance and/or in parallel with a clock inductor. The presence of a compensation capacitance reduces the overhead associated with the inductor and the decoupling capacitor. The compensation capacitor (s) can be selectively switched into the network to create scalable resonant frequencies.
Abstract:
Circuit (1) of a voltage controlled oscillator comprising: - a bridge structure including two cross-coupled transistors of N type (M 3 , M 4 ) and two cross-coupled transistors of P type (M 5 , M 6 ); - a current mirror (3) connected to the two cross-coupled transistors of N type (M 3 , M 4 ) and arranged to generate a bias current (I B ) for the circuit (1); - an LC resonator (2) placed in parallel between the two cross-coupled transistors of N type (M 3 , M 4 ) and the two cross-coupled transistors of P type (M 5 , M 6 ). The circuit (1) is characterised in that the LC resonator (2) comprises: two pairs of differential inductors (L 1 , L 2 ) mutually coupled by means of a mutual inductance coefficient (M), each pair comprising a first inductor (L 1 ) arranged on a respective branch (10a) of an external loop, and a second inductor (L 2 ) arranged on a respective branch (12a) of an internal loop; a first varactor (C v33 ) connected to a common node (A) and to a first branch (12a) of the internal loop; a second varactor (C v33 ) connected to the common node (A) and to a second branch (12a) of the internal loop.
Abstract:
Embodiments feature techniques and systems for analog and digital tuning of crystal oscillators. In one aspect, some implementations feature a method for tuning a frequency of a crystal oscillator that can include adjusting the tuning frequency of the crystal oscillator from a nominal frequency via a switched-capacitor frequency tuning circuit, the switched-capacitor frequency tuning circuit can have switchable sections to adjust the tuning of the crystal oscillator. The method can include controlling an analog control input that is coupled to a varactor within each of the switchable sections, where each of the switchable sections can include a fixed capacitor in series with the varactor and a switch. The method can involve controlling a digital control input, where the digital control input can electrically connect or disconnect one or more of the switchable sections from the crystal. There can be independent control between the digital and analog tuning mechanisms.
Abstract:
A plurality of varactors are coupled (102) via a first electrode to a shared terminal that in turn can operably couple (103) to a source of control voltage. A second electrode for each varactor couples (107) to a corresponding switch, where each switch couples to at least two different voltage levels. So configured, the second electrode of each varactor can be individually connected to either of two voltage levels. This can be leveraged to control, in coarse steps, the overall aggregate effective capacitance presented by these components. At least some of these varactors can have differing corresponding capacitances, the specific values of which can be selected in order to facilitate relatively equal spacing and substantially equal rates of reactance change versus the control voltage value between aggregate-capacitive reactance ranges as correspond to differing settings for the switches at various levels for the control voltage source.
Abstract:
The invention relates to an electronic device for controlling a controlled oscillator. The electronic device provides a control input for supplying a control signal for tuning the oscillating frequency of the oscillator. Further the electronic device provides a transconductor having a transfer function in the frequency range with a substantially first- order high frequency roll off characteristic. The transconductor is adapted to be coupled to a tank circuit (L0, C0) and to act as a variable capacitance, such that the control signal controls the value of the variable capacitance of the transconductor for tuning the oscillating frequency of the controlled oscillator.
Abstract:
A wideband Voltage Controlled Oscillator (VCO) uses a resonant circuit tunable over a wide range of resonant frequencies. The resonant circuit includes voltage variable elements such that the resonant frequency, and thus the frequency of oscillation, may be electronically tuned. The voltage variable elements are arranged such that multiple control voltages determine the resonant frequency. A first control voltage is applied to a first set of tuning elements and operates as a coarse control of the resonant frequency. A second control voltage is applied to a second set of tuning elements and operates as a fine control of the resonant frequency. Using multiple control voltages on multiple elements allows for a wideband VCO while maintaining a low VCO gain.
Abstract:
In a cross type oscillator (20) comprising spiral inductors (L1, L2) and resonance capacitors (C1, C2) which decide resonance frequencies, transistors (Q1, Q2) which generate negative resistance by base−collector connection with the common emitter, and a current source (I1) which decides a circuit current value, a double−wave output is extracted from the emitter terminals of the transistors (Q1, Q2).