Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for-changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
Embodiments feature techniques and systems for analog and digital tuning of crystal oscillators. In one aspect, some implementations feature a method for tuning a frequency of a crystal oscillator that can include adjusting the tuning frequency of the crystal oscillator from a nominal frequency via a switched-capacitor frequency tuning circuit, the switched-capacitor frequency tuning circuit can have switchable sections to adjust the tuning of the crystal oscillator. The method can include controlling an analog control input that is coupled to a varactor within each of the switchable sections, where each of the switchable sections can include a fixed capacitor in series with the varactor and a switch. The method can involve controlling a digital control input, where the digital control input can electrically connect or disconnect one or more of the switchable sections from the crystal. There can be independent control between the digital and analog tuning mechanisms.
Abstract:
A linear voltage-controlled capacitance circuit is provided that includes a plurality of differentially coupled metal-oxide-semiconductor (MOS) varactor pairs. Each MOS varactor pair is operable to receive a same tuning voltage and to receive a bias voltage unique to the MOS varactor pair. The capacitance circuit is operable to generate a positive tank node signal and a negative tank node signal based on the tuning voltage and the bias voltages.
Abstract:
Disclosed herein are embodiments of an LC-type VCO with multiple operational frequency bands having reasonably similar frequency vs. control signal slopes.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A voltage controlled oscillator of the present invention comprises a reference voltage generation section 114 for generating a plurality of reference voltage based on a power supply voltage. A first to a third reference voltages Vref1, Vref2, and Vref3 are inputted to a first to a third variable capacitance circuits A, B, and C, respectively, at each one of terminals of each of the first to the third variable capacitance circuits A, B, and C. The first to the third reference voltages Vref1, Vref2, and Vref3 each has a fixed value, and a difference between the first reference voltage Vref1 and the second reference voltage Vref2 and a difference between the second reference voltage Vref2 and the third reference voltage Vref3 represent values different from each other. A control voltage Vt for feedback-controlling an oscillation frequency is inputted to each of the other of the terminals of the variable capacitance element of each of the n variable capacitance circuits such that the control voltage Vt having the same value is inputted to said each of the other of the terminals.
Abstract:
An oscillator includes: oscillation units (11 through 1n) outputting oscillation signals of different frequencies; a transmission line (15) to which outputs of the oscillation units (11, 12) are connected, the transmission line having a characteristic impedance corresponding to an output impedance of an output terminal (Tout); and a low-pass filter 818) connected between the transmission line (15) and the output terminal.
Abstract:
In various embodiments, the invention provides a discrete clock generator and/or a timing and frequency reference using an LC-oscillator topology, having a frequency controller to control and provide a stable resonant frequency, which may then be provided to other, second circuitry such as a processor or controller. Frequency stability is provided over variations in a selected parameter such as temperature and fabrication process variations. The various apparatus embodiments include a sensor adapted to provide a signal in response to at least one parameter of a plurality of parameters; and a frequency controller adapted to modify the resonant frequency in response to the second signal. In exemplary embodiments, the sensor is implemented as a current source responsive to temperature fluctuations, and the frequency controller is implemented as a plurality of controlled reactance modules which are selectively couplable to the resonator or to one or more control voltages. The controlled reactance modules may include fixed or variable capacitances or inductances, and may be binary weighted. Arrays of resistive modules are also provided, to generate one or more control voltages.
Abstract:
A voltage-controlled oscillator having an inductor circuit, n pieces (n is two or more) of variable capacitance circuit having variable capacitance elements, negative resistance circuits, and reference voltage generation means of generating a reference voltage from a power supply voltage, and wherein a predetermined reference voltage is inputted to some terminals of the variable capacitance elements of the n pieces of variable capacitance circuit, a control voltage is inputted to the other terminals thereof, and of the variable capacitance elements of the n pieces of variable capacitance circuits, the predetermined reference voltage inputted to some terminals of the variable capacitance elements of at least two pieces of the variable capacitance circuit is different.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL, control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for-changing PLL operating conditions, in addition to compensating for variable VCO gain.