Abstract:
A field emitter structure, comprising: a base substrate; a field emitter element on the base substrate; a multilayer differentially etched dielectric stack circumscribingly surrounding the field emitter element on the base substrate; and a gate electrode overlying the multilayer differentially etched dielectric stack, and in circumscribing spaced relationship to the field emitter element. Also disclosed are electron source devices, comprising an electron emitter element including a material selected from the group consisting of leaky dielectric materials, and leaky insulator materials, as well as electron source devices, comprising an electron emitter element including an insulator material doped with a tunneling electron emission enhancingly effective amount of a dopant species, and thin film triode devices.
Abstract:
The emitter plate 60 of a field emission flat panel display device includes a layer 68 of a resistive material and a mesh-like structure 62 of an electrically conductive material. A conductive plate 78 is also formed on top of resistive coating 68 within the spacing defined by the meshes of conductor 62. Microtip emitters 70, illustratively in the shape of cones, are formed on the upper surface of conductive plate 78. With this configuration, all of the microtip emitters 70 will be at an equal potential by virtue of their electrical connection to conductive plate 78. In one embodiment, a single conductive plate 82 is positioned within each mesh spacing of conductor 80; in another embodiment, four conductive plates 92 are symmetrically positioned within each mesh spacing of conductor 90. Also disclosed is an arrangement of emitter clusters comprising conductive plates 102 having a plurality of microtip emitters 104 formed thereon, or spaced thereform by a thin layer of resistive material, each cluster adjacent and laterally spaced from a stripe conductor 100 by a region 106 of a resistive material. The conductive stripes 100 are substantially parallel to each other, are spaced from one another by two conductive plates 102, and are joined by bus regions 110 outside the active area of the display.
Abstract:
A method of forming an array of electron field emitters at a face of a semiconductor layer is disclosed. The method includes the steps of: providing a semiconductor workpiece having a plurality of field emitter sites on a face thereof; for each site, forming a conductive column having a base coupled to the site and an upstanding end opposed to the base; for each conductive column, forming a metallic column on the upstanding end of the conductive column; depositing an electrically conductive polymer layer over the workpiece; etching the electrically conductive polymer layer to selectively expose the metallic columns; placing the workpiece in an electrolytic etchant solution capable of etching the metallic columns; applying an electric potential between the conductive polymer layer and an anode electrode in the etchant to etch the metallic columns into a respective plurality of sharp emitter tips; and removing the conductive polymer layer. Where the metallic column is tungsten, an aqueous solution of potassium hydroxide is disclosed as an etchant. Where the metallic column is a platinum-iridium alloy, an aqueous solution of calcium chloride and hydrochloric acid is disclosed as an etchant.
Abstract:
A high resolution matrix addressed flat panel display having single field emission microtip redundancy is formed. A dielectric base substrate is provided. Parallel, spaced conductors acting as cathode columns for the display are formed upon the substrate. A layer of insulation is located over the cathode columns. Parallel, spaced conductors acting as gate lines for the display is formed over the layer of insulation at a right angle to the cathode columns. The intersections of the cathode columns and gate lines are the pixels of the display. A plurality of openings at the pixels extend through the insulating layer and gate lines. At each of the pixels are a plurality of field emission microtips connected to and extending up from the cathode conductor columns and into the plurality of openings. There is a circular resistive layer surrounding each of the field emission microtips to obtain emission uniformity by sustaining the cathode to gate voltage.
Abstract:
Thin-film edge field emitter devices are provided which are capable of low voltage operation. The method of manufacture of the devices takes advantage of chemical beam deposition and other thin-film fabrication techniques. Both gated and ungated devices are provided and all of the devices include a plurality of thin-films deposited on the side-wall of a non-flat substrate. The gated emitter devices include alternating conductive and electrically insulating layers, and upper parts of the latter are removed to expose the upper edges of the conductive layers, with a central one of these conductive layers comprising an emitter for emitting electrons. The emitter devices can be inexpensively produced with a high degree of precision and reproducibility without the need for expensive lithographic machines. The devices can be used in field emitter arrays employed as vacuum transistors, vacuum microelectronic analog and digital devices, and modulated or cold electron sources.
Abstract:
A chemical mechanical polishing process for the formation of self-aligned gate structures surrounding an electron emission tip for use in field emission displays in which the emission tip is i) optionally sharpened through oxidation, ii) deposited with a conformal insulating material, iii) deposited with a flowable insulating material, which is reflowed below the level of the tip, iv) optionally deposited with another insulating material, v) deposited with a conductive material layer, and vi) optionally, deposited with a buffering material, vii) planarized with a chemical mechanical planarization (CMP) step, to expose the conformal insulating layer, viii) wet etched to remove the insulating material and thereby expose the emission tip, afterwhich ix) the emitter tip may be coated with a material having a lower work function than silicon.
Abstract:
A vertical microelectronic field emitter includes a conductive top portion and a resistive bottom portion in an elongated column which extends vertically from a horizontal substrate. An emitter electrode may be formed at the base of the column, and an extraction electrode may be formed adjacent the top of the column. The elongated column reduces the parasitic capacitance of the microelectronic field emitter to provide high speed operation, while providing uniform column-to-column resistance. The field emitter may be formed by first forming tips on the face of a substrate and then forming trenches in the substrate around the tips to form columns in the substrate, with the tips lying on top of the columns. The trenches are filled with a dielectric and a conductor layer is formed on the dielectric. Alternatively, trenches may be formed in the face of the substrate with the trenches defining columns in the substrate. Then, tips are formed on top of the columns. The trenches are filled with dielectric and the conductor layer is formed on the dielectric to form the extraction electrodes.
Abstract:
This is a method of forming an array of electron emitters at the face of a semiconductor layer. The method comprises the steps of depositing a layer of polycrystalline silicon on a face of a semiconductor workpiece; doping the polycrystalline silicon layer to render the polycrystalline silicon layer conductive; and for each of a plurality of emitter cells, performing an orientation-dependent polycrystalline silicon etch to define a pyramid for the cell having a base affixed to the workpiece and an upstanding tip opposed to the base. Preferably the method also includes the steps of forming a field effect transistor at the face of the workpiece prior to the depositing of the layer, with the pyramid having a base in conductive contact with the drain of the transistor. The polycrystalline silicon layer may be doped in situ after deposition.
Abstract:
Bidirectional field emission devices (FEDs) and associated fabrication methods are described. A basic device includes a first unitary field emission structure and an adjacently positioned, second unitary field emission structure. The first unitary structure has a first cathode portion and a first anode portion, while the second unitary structure has a second cathode portion and a second anode portion. The structures are positioned such that the first cathode portion opposes the second anode portion so that electrons may flow by field emission thereto and the second cathode portion opposes the first anode portion, again so that electrons may flow by field emission thereto. A control mechanism defines whether the device is active, while biasing voltages applied to the first and second unitary structures define the direction of current flow. Multiple applications exist for such a bidirectional FED. For example, an FED DRAM cell is discussed, as are methods for fabricating the various devices.
Abstract:
A field emission device and method for manufacturing which comprises using a diffusion mask to preserve an area of a silicon substrate for use as a cathode while all around the cathode the substrate is being diffused with oxygen to form an insulating layer. And further comprising depositing a molybdenum gate electrode layer on the insulating layer and etching the molybdenum gate electrode layer such that the diffusion mask falls off and the insulating layer is dissolved around the cathode through the hole formed in the gate electrode layer by the diffusion mask being removed. The gate electrode openings are therefore automatically and independently self-aligned with their respective cathodes.