Abstract:
A tunable element in the microwave frequency range is described that may include one or more tunable elements that are directly digitally controlled by a digital bus connecting a digital control circuit to each controlled element. In particular, each digital signal is filtered by a digital isolation technique so that the signal reaches the tunable elements with very low noise. The low noise digital signals are then converted to analog control voltages. The direct D/A conversion is accomplished by a special D/A converter which is manufactured as an integral part of a substrate. This D/A converter in accordance with the invention may consist of a resistor ladder or a directly digitally controlled capacitor. The direct digitally controlled capacitor may be a cantilevered type capacitor having multiple separate electrodes or sub-plates representing binary bits that may be used to control the capacitor. A low cost microwave oscillator is disclosed in which some of the filters and oscillators are direct digitally tuned elements.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL, control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
Systems for controlling the frequency of the output signal of a controllable oscillator in a frequency synthesizer are provided. One such system comprises a controllable oscillator and a frequency control circuit. The controllable oscillator is configured to generate an output signal that has a predefined frequency. The controllable oscillator is also configured with a plurality of operational states that are controlled by the frequency control circuit. Each operational state of the controllable oscillator defines a distinct frequency for the output signal of the controllable oscillator. The frequency control circuit receives the output signal of the controllable oscillator and determines the distinct frequency for the output signal that best approximates the predefined frequency. The frequency control circuit may also provide a control signal to the controllable oscillator that is configured to change the controllable oscillator to the operational state corresponding to the distinct frequency that best approximates the predefined frequency.
Abstract:
An inductor circuit includes a pair of inductors connected in parallel with each other and a switch for turning on and off electric power to one of the pair of inductors. The inductance of the inductor circuit can be varied and the quality factor Q can be improved. Further, RF circuits employing the inductor circuit can generate an intended operating frequency.
Abstract:
In various embodiments, the invention provides a discrete clock generator and/or a timing and frequency reference using an LC-oscillator topology, having a frequency controller to control and provide a stable resonant frequency, which may then be provided to other, second circuitry such as a processor or controller. Frequency stability is provided over variations in a selected parameter such as temperature and fabrication process variations. The various apparatus embodiments include a sensor adapted to provide a signal in response to at least one parameter of a plurality of parameters; and a frequency controller adapted to modify the resonant frequency in response to the second signal. In exemplary embodiments, the sensor is implemented as a current source responsive to temperature fluctuations, and the frequency controller is implemented as a plurality of controlled reactance modules which are selectively couplable to the resonator or to one or more control voltages. The controlled reactance modules may include fixed or variable capacitances or inductances, and may be binary weighted. Arrays of resistive modules are also provided, to generate one or more control voltages.
Abstract:
In wireless application there is made use of a quadrature oscillators that generate signals that are capable of oscillating at quadrature of each other. The quadrature oscillator is comprised of two differential modified Colpitts oscillators. A capacitor bank allows for the selection of a desired frequency from a plurality of discrete possible frequencies. The quadrature oscillator is further coupled with a phase-error detector connected at the point-of-use of the generated ‘I’ and ‘Q’ channels and through the control of current sources provides corrections means to ensure that the phase shift at the point-of-use remains at the desired ninety degrees.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A communication semiconductor integrated circuit has an oscillator circuit forming part of a transmission PLL circuit fabricated on a single semiconductor chip together with an oscillator circuit forming part of a reception PLL circuit and an oscillator circuit for an intermediate frequency. The oscillator circuit for the transmission PLL circuit is configured to be operable in a plurality of bands. The communication semiconductor integrated circuit also comprises a circuit for measuring the oscillating frequency of the oscillator circuit for the transmission PLL circuit, and a storage circuit for storing the result of measurement made by the measuring circuit. A band to be used by the oscillator circuit for the transmission PLL circuit is determined based on values for setting the oscillating frequencies of the oscillator circuit forming part of the reception PLL circuit and the intermediate frequency oscillator circuit, and the result of measurement stored in the storage circuit.
Abstract:
A capacitor bank includes a first node, a second node, first blocking capacitors, N first AMOS varactors, second blocking capacitors and N second AMOS varactors. The first blocking capacitors have first terminals connected to the first node and second terminals where a bias voltage is applied. The N first AMOS varactors have first terminals connected to the second terminals of the first block capacitors. The second blocking capacitors have first terminals connected to the second node and second terminals where the bias voltage is applied. The N second AMOS varactors have first terminals connected to the second terminals of the second blocking capacitors and second terminals connected to second terminals of the first AMOS varactors, respectively, wherein N binary coded signals are applied to the respective second terminals of the first AMOS varactors and the second AMOS varactors. Therefore, phase-noise degradation caused by the FM modulation may be avoided.
Abstract:
An integrated oscillator that may be used as a time clock includes circuitry that oscillates about an RC time constant, which RC time constant is adjustable to provide a desired frequency of oscillation. More specifically, the oscillator includes a capacitor array that has a plurality of capacitors coupled in parallel wherein each capacitor may be selectively included into the RC time constant or selectively excluded there from. Rather than setting the capacitance values to a desired capacitance value, a system for adjusting the time constant includes circuitry for measuring an output frequency and for comparing that to a certified frequency source wherein the time constant is adjusted by adding or removing capacitors from the capacitor array until the frequency of the internal clock matches an expected frequency.