Abstract:
The present invention relates to a mesh electrode for cardiac resynchronization therapy, and a manufacturing method therefor. More specifically, the present invention relates to: a mesh electrode for cardiac resynchronization therapy, formed from a wire composed of a first biocompatible rubber layer in which silver nanowires are dispersed, and a second biocompatible rubber layer famed so as to be adjacent to the first biocompatible rubber layer; and a manufacturing method therefor.
Abstract:
The present invention relates to a silicon polymer production method using a non-transition-metal-catalyst method of hydrosilylation, and more specifically relates to a production method for a silicon polymer using a non-transition-metal-catalyst method of hydrosilylation, wherein an environmentally friendly silicon polymer is produced by using hydrosilylation using a non-transition metal as a catalyst, thereby avoiding the use of platinum, palladium and rhodium or other expensive platinum group catalysts and so achieving outstanding economic viability and making it possible to prevent residues of heavy metals.
Abstract:
A flow field including graphene foam for a fuel cell. The flow field is made of graphene foam that enhances mass transport and suffers no corrosion under operating conditions of the fuel cell when compared with conventional flow fields. In addition, compressed graphene foam has smaller in-plane pores due to the compression and has more tortuous pathways for flowing reactants, thereby increasing retention time of reactants and accelerating diffusion of reactants into a gas diffusion layer (GDL). Further, large through-plane pores inside the graphene foam transport reactants to entire areas of a catalyst layer, and faster flow velocity compared with the conventional membrane electrode assembly (MEA) is derived from a decreased flow field width due to compression. Therefore, mass transport of reactants and products is enhanced, and performance of the fuel cell is improved at high current density regions.
Abstract:
Provided are novel ligand, a chiral metal complex including the same, and a use of the chiral metal complex for analyzing the chirality of a charged compound by 1H NMR spectroscopy. The chiral metal complex of the present invention may be used as the chiral solvating agent to conveniently analyze the optical purity of charged compounds such as various amine derivatives, carboxylic acid derivatives, cyanohydrin derivatives and charged metal complexes by 1H NMR spectroscopy.
Abstract:
Provided are a composition for ribonucleoprotein delivery, comprising a guide RNA free of 5′-terminal phosphates, and a method for ribonucleoprotein delivery, using the same.
Abstract:
Provided is a method of preparing a silylative-reduced N-heterocyclic compound by reducing an N-heteraromatic compound including a sp2 hybridized nitrogen atom while simultaneously introducing a silyl group into a beta-position with respect to a nitrogen atom of the N-heteroaromatic compound, using a silane compound, in the presence of an organoboron catalyst.
Abstract:
The present invention relates to a pharmaceutical composition for improving a sociability behavior in a patient having a mental disease with an enhanced NMDAR function.
Abstract:
A method for reducing metal artifacts in computed tomography (CT) is disclosed. The method for reducing metal artifacts in CT includes: obtaining a sinogram reduced in size from an original sinogram; setting up a linear algebraic equation according to remaining data excluding data damaged by a metal based on the obtained sinogram; restoring a low-resolution image based on the set up linear algebraic equation; calculating a sinogram from the restored low-resolution image; restoring a sinogram by disposing the calculated sinogram data in the original sinogram and by utilizing the calculated sinogram data as pre-information; and restoring a final CT image from the restored sinogram. Through introduction of a novel metal artifact reduction (MAR) technique referred to as an algebraic correction technique (ACT) using an intermediate image of an attenuation coefficient of an outside of a metal area, an image closest to an original image can be obtained by minimizing metal artifacts in CT.
Abstract:
An apparatus and method for computed tomography image processing is provided. The apparatus includes: an X-ray detection unit that detects an X-ray beam having passed through a subject and outputs an energy value thereof; a line integral calculation unit that calculates line integral values of attenuation coefficients representing attenuation of the energy value of the X-ray beam having passed through the subject and been detected, based on the energy value; an image processing unit that reconstructs a tomogram based on the line integral values; and an image output unit that outputs the tomogram. The apparatus and method for computed tomography image processing can calculate line integral values of attenuation coefficients constituting an integrand of an X-ray projection function using the mean value theorem for integrals in order to restore an image of a subject from an X-ray beam detected in computed tomography image processing.
Abstract:
Disclosed is an ultrasonic diagnostic apparatus. The ultrasonic diagnostic apparatus includes: an ultrasonic sensor transmitting ultrasonic waves and sensing echo signals thereof; a signal processor processing the signals sensed by the ultrasonic sensor; a B-mode image generation unit generating a brightness mode (B-mode) image in a 2D plane based on the signal processing results by the signal processor and extracting left ventricle boundary data from the generated B-mode image; a C-mode image generation unit generating Doppler data for generation of a C-mode image based on the signal processing results by the signal processor; and a blood flow velocity vector calculation unit calculating a blood flow velocity vector in a 2D image plane based on a simultaneous equation composed of a relation equation between the extracted left ventricle boundary data, the Doppler data and the blood flow velocity vector, and a 2D Navier-Stokes equation obtained from image data generated through signal processing by the signal processor, wherein the Navier-Stokes equation further uses, as a variable, a mass source term representing distribution of source and sink of mass with respect to the 2D image plane.