Abstract:
Systems and methods for measuring the distance to a target object (102) and acquiring scale and point-to-point distance information for that target object in an environment using a remotely operated flying platform, such as an unmanned aerial vehicle (UAV, 20). The system uses on-board sensors (132, 138, 166) and processing techniques to provide discrete or continuous measurements of the distances between points on the target object or the scale of the target object. The addition of on-board three-dimensional measurement capabilities to UAVs (or other flying platforms) allows the collection of distance data. Having this capability enables these systems to acquire distances between points on a single object, such as determining the true scale factors of items in images captured by the UAV, in the course of performing metrology-related tasks.
Abstract:
The present invention relates to the field of aircrafts and provides a photographic assembly applied to an aircraft, where the aircraft includes a vehicle body. The photographic assembly includes: a vibration absorption member, a frame provided at the periphery of the vehicle body and connected to the vehicle body through a vibration absorption member, a gimbal connected to the frame and a camera connected to the gimbal. The frame of the photographic assembly in embodiments of the present invention can be mounted on unmanned aerial vehicle bodies of different specifications and the frame is sleeved over the vehicle body, so that the structure of the vehicle body can be designed compactly. The embodiments of the present invention further provide an unmanned aerial vehicle having the photographic assembly.
Abstract:
An unmanned aerial vehicle includes: a vehicle body, where the vehicle body includes a first positioning device; and a landing gear, where the landing gear can be detached from the vehicle body, and when the landing gear is detached from the vehicle body, the vehicle body determines a position of the landing gear by using the first positioning device. Because the landing gear can be detached from the vehicle body and the vehicle body can determine the position of the landing gear by using the first positioning device, the unmanned aerial vehicle, when performing a flight mission, is not affected by the weight of the landing gear, avoiding that the landing gear blocks an image capture device and implementing convenient takeoff and landing.
Abstract:
Provided is a nondestructive inspection ("NDI") system that includes an unmanned aerial vehicle ("UAV") comprising a body structure, the body structure comprising one or more support structures where each of the one or more support structures comprise a releasable end structure; and one or more NDI sensors integrated to a respective releasable end structure. The NDI system can also include a location tracking system that can determine a position, an orientation, or both of the UAV and/or one or more NDI sensors relative to a structure being inspected.
Abstract:
The invention relates to a system for automatically inspecting a surface of an object such as an aircraft (54), a transporting vehicle, a building or a work of art, said surface being liable to contain a defect. The system is characterized in that it comprises a fleet comprising at least one drone (14a, 14b, 14c), each drone comprising a module for acquiring images of at least one section of the surface to be inspected, and a module for processing the acquired images, which module is suitable for delivering a piece of information representative of the state of each inspected surface portion, which piece of information is called the result of the processing.