Abstract:
The current invention involves periodically ordered nanostructured materials and methods of using and modifying the materials. In some embodiments, the invention provides periodically structured microphase separated polymeric articles that include periodically occurring separate domains. The polymeric species comprising one or more of the domains, for some embodiments, contains an inorganic species capable of forming an inorganic oxide ceramic. In another aspect, the invention provides methods for modifying the polymeric articles by oxidation and/or radiation to form periodically structured porous and relief articles that, in some embodiments, include a ceramic oxide in their structure. The invention also provides methods of use for the novel articles and novel structures constructed utilizing the articles.
Abstract:
The present invention relates to a method for the synthesis and utilization of block copolymer can that form sub-10 nm lamella nanostructures. Such methods have many uses including multiple applications in the semiconductor industry including production of templates for nanoimprint lithography.
Abstract:
The present invention generally relates to nanofabrication and, in some embodiments, to methods of synthesizing selectively binding patched nanoparticles and the devices that can be made from them. In some embodiments, the invention relates to methods of assembling arbitrarily shaped structures from patched nanocubes and the devices and uses that follow. For example, nanocube building blocks may be patched by stamping their faces with a selectively binding chemical species (e.g. DNA, antibody-antigen pairs, etc.), or by using self-assembly to attach to the nanocubes multiple selectively binding patch species whose immiscibility can be preprogrammed. Arbitrarily shaped structures can then be designed and assembled by deciding which faces will be bonded to each other in some target structure and combining nanocubes that have selectively binding patches on those faces. Other aspects of the invention are also directed to methods of making such nanocubes or other nanoparticles, methods of forming such nanocubes.
Abstract:
Provided herein is a method, including creating a first layer over a substrate, wherein the first layer is configured for directed self-assembly of a block copolymer thereover; creating a continuous second layer over the first layer by directed self-assembly of a block copolymer, wherein the second layer is also configured for directed self-assembly of a block copolymer thereover; and creating a third layer over the continuous second layer by directed self-assembly of a block copolymer. Also provided is an apparatus, comprising a continuous first layer comprising a thin film of a first, phase-separated block copolymer, wherein the first layer comprises a first chemoepitaxial template configured for directed self-assembly of a block copolymer thereon; and a second layer on the first layer, wherein the second layer comprises a thin film of a second, phase-separated block copolymer.
Abstract:
A method of assembly of micro-scale objects includes forming a pattern of a first functional moiety on a surface of a substrate, contacting the surface of the substrate with a first liquid suspension including first micro-scale feedstock elements functionalized with a second functional moiety, complimentary to the first functional moiety, on first portions of the first micro-scale feedstock elements and functionalized with a third functional moiety on second portions of the first micro-scale feedstock elements, aligning the first portions of the first micro-scale feedstock elements with the surface of the substrate, and facilitating bonding the second functional moieties to the first functional moieties to form a first microstructure pattern of the first micro-scale feedstock elements on the surface of the substrate.
Abstract:
Block copolymer nanostructures such as nanosheets, nanoribbons, and nanotubes, are provided. The nanotructures are formed by the self-assembly of block copolymers during evaporation of solvent from a sol that has been "disturbed", either i) internally by the introduction of relief (e.g. curvature) and/or the inclusion of nanoparticles in the sol; or ii) externally, e.g. by physical deformation of a semi-solid form of the sol, or a combination of internal and external disturbance. The nanostructures have uses in, for example, energy devices, electronics, sensors and drug delivery applications.
Abstract:
L'invention concerne un procédé de réalisation d'un film de copolymères à blocs auto assemblés sur un substrat, ledit procédé consistant à effectuer un dépôt simultané de copolymère à blocs et de copolymère statistique au moyen d'une solution contenant un mélange, de copolymère à blocs et de copolymère statistique de nature chimique différente et non miscibles, puis à effectuer un traitement de recuit permettant la promotion de la ségrégation de phases inhérente à l'auto-assemblage des copolymères à blocs.
Abstract:
실리콘 기판 상에 플라스틱 입자들을 균일한 무작위 패턴으로 서로 이격하여 위치시키는 단계; 상기 플라스틱 입자들 사이에 촉매층을 형성하는 단계; 상기 플라스틱 입자들을 제거하는 단계; 상기 촉매층과 접촉하는 실리콘 기판 부위를 수직적으로 식각하는 단계; 및 상기 촉매층을 제거하는 단계를 포함하는, 실리콘 나노 와이어 어레이의 제조방법이 제공된다. 본 발명에 따르면, 공정이 단순하고 비용효과적이며 대면적 공정으로 대량생산이 가능하고 자원제한적인 장소에서도 나노 와이어의 제조가 가능하며, 나노 와이어의 구조를 독립적으로 제어할 수 있다.
Abstract:
A method of an aspect includes forming a directed self assembly alignment promotion layer over a surface of a substrate having a first patterned region and a second patterned region. A first directed self assembly alignment promotion material is formed selectively over the first patterned region without using lithographic patterning. The method also includes forming an assembled layer over the directed self assembly alignment promotion layer by directed self assembly. A plurality of assembled structures are formed that each include predominantly a first type of polymer over the first directed self assembly alignment promotion material. The assembled structures are each adjacently surrounded by predominantly a second different type of polymer over the second patterned region. The first directed self assembly alignment promotion material has a greater chemical affinity for the first type of polymer than for the second different type of polymer.