Abstract:
A powered sliding device for a vehicle sliding door comprises a motor, a wire drum rotated by the motor, a wire cable provided between the wire drum and the sliding door, an optical sensor for outputting a detecting signal when the wire drum rotates, a controller for calculating from the detecting signal at least one of a rotational speed of the wire drum, a rotational amount of the wire drum and a rotational direction of the wire drum, a latch unit provided in the sliding door and engageable with a striker, a power supply switch for supplying electric power to the optical sensor. The power supply switch stops supplying the power to the optical sensor while the door is being closed.
Abstract:
A door closing apparatus facilitates simultaneously opening of a pair of sliding doors by pulling a manual release wire. Specifically, by pulling the manual release wire, a belt 82 fixed to the manual release wire moves with belt pulleys and two hooks to contact and move respective movable frames to the opening directions thereof. Due to these movements, permanent magnets 31A, 31B rotate, through respective racks to release the holding of the closed doors. Thus, the sliding doors can be opened manually.
Abstract:
A clutch selectively transmits torque and rotary motion from a spindle having an axis of rotation to a drum. First and second shoe members disposed radially between the spindle and the drum move radially with respect to the axis of rotation between an engaged position and a disengaged position with respect to the drum. The first and second shoe members are responsive to acceleration for moving into the engaged position and responsive to rotational speed for moving into the disengaged position. A biasing spring normally maintains the first and second shoe members in the disengaged position when the spindle is at rest.
Abstract:
An electromechanically operated door having a control and regulation system for the door, the door for being driven by an electric motor, the movement of the door being controlled by sensors. The control and regulation system is equipped with a microprocessor control. In addition to the normal path of data to the microprocessor control, a dual redundancy is achieved, in that there is a safety monitoring system which receives the same safety-related information as the microprocessor control. This safety monitoring system, for its part, is capable of detecting a fault, i.e. if the microprocessor control system has not shut off the door, the door is shut off by the safety monitoring system, which for its part reports any faults which occur in the system to a fault detection unit, and here again, by means of a redundant shutdown unit, brings the connected motor and thus the door to an immediate stop. In addition to the automatic verification of the safety-related functions, manual verification of the safety functions is also possible. Also contemplated is a control and regulation system, having the above features, for a door.
Abstract:
A brake and clutch assembly mounted on an electric motor's drive shaft comprises, in succession and outwardly from the motor, a brake pad, a drive disk, a clutch plate, a pulley, a compression spring and an end cap. The drive disk includes a sleeve with the clutch plate and the pulley being slidably mounted thereon. A pin extending diametrically through the shaft lies in a diametrical V-shaped recess defined in the drive disk. The spring biases the pulley, clutch plate and disk drive towards the brake pad thereby frictionally retaining the drive disk thereagainst when the motor is not operating and preventing the components from rotating. When the motor is started, the pin climbs out of the bottom of the recess by pushing the drive disk against the spring's force thereby axially displacing slightly the disk drive away from the brake pad such that the pin rotates the drive disk which frictionally drives the clutch plate and the pulley. Resistance applied against the rotation of the pulley causes the clutch plate to slip thereby allowing the pulley to stop while the clutch plate, the drive disk and the motor shaft continue to rotate, thus preventing damage to the motor. The friction forces between the clutch plate and the pulley are insufficient to stop the clutch plate and thus the drive disk and the motor shaft if the pulley is forced to stop rotating.
Abstract:
Disclosed is a structure for mounting a window regulator in which a guide rail is fixedly mounted by a plurality of bolts to a door inner panel, and a door window is supported and bolted from below by a sliding support member which slides along the guide rail, to thereby move the door window up and down. One of a plurality of mounting holes of the door inner panel for mounting the guide rail is a round hole formed as a reference hole which does not allow adjustment of mounting position of the guide rail, while the other mounting holes are oblong holes which allow the adjustment of mounting position of the guide rail, mounting holes of the sliding support member for mounting the door window are formed oblong to allow adjustment of mounting position of the door window, and a service hole is provided, in the door inner panel, for fastening the door window in an up stop position of the door window to the sliding support member.
Abstract:
A rotation deceleration device used for a sanitary cleaning device which includes a toilet seat and a toilet cover and is attached to a toilet bowl, thereby injecting warm water in the toilet bowl. The rotation deceleration device includes a cylinder having a hydraulic chamber filled with a control oil; a rotation shaft inserted through the cylinder; a control wall radially projected from the rotation shaft to divide the hydraulic chamber into at least two sub chambers; a control valve provided between the control wall and an inner surface of the cylinder. The control valve has a closing wall opposed to a side surface of the control wall so as to be attachable thereto and also has an engaging member opposed to the other side of the control wall so as to be engageable therewith in accordance with the rotation of the rotation shaft. The control valve is formed of a material which has a higher coefficient of thermal expansion than that of a material forming the control wall and the cylinder.
Abstract:
An automatically actuated door arrangement is provided. The arrangement includes a plurality of slidable doors which are opened and closed by an electric motor/cable arrangement. Open and close switches control the opening and closing of the doors. A sensor device provides the open doors/close doors signals to the controller, and eventually to the motor. The motor is connected to the cable drive by a clutch arrangement which allows slippage should the movement of the doors become obstructed. The door travel path may be arranged in a slight V-shape, to allow for more efficient sealing of the door bottoms. A controller is provided to receive, process, and distribute electronic signals for controlling the extent of the door opening, the speed of opening and closing, and other operating parameters. The controller includes a series of indicators for monitoring the status of the door arrangement, and also includes inputs for altering the operating parameters of the door arrangement.
Abstract:
A gate opening and closing apparatus for moving a gate between a gate closed position which covers an access opening and a gate opened position. The apparatus comprises an electric motor for driving the gate between the open position and the closed position. A connecting arrangement connects the electric motor to the gate in order to enable powered movement of the gate between the gate opened and gate closed positions. A control unit in the form of a microprocessor control unit is operatively connected to the electric motor for control of the same and hence control of the movement of the gate. The gate normally remains unlocked at the closed position and is only locked when a force is applied to the gate tending to move same to the open position. In one embodiment, a positive locking mechanism, such as a solenoid lock may be provided and which is automatically locked when an opening force is applied to the gate. In another embodiment, the gate is not positively locked and the electric motor applies a closing force to the gate to overcome any effort of an opening movement. The gate opening and closing mechanism is uniquely constructed in that there is no gear box which would otherwise preclude a manual opening of the gate in the event of emergency.
Abstract:
A sliding door in a van is mounted on tracks for sliding movement between open and closed positions. At the closed position a weather strip is compressed and a door latch is latched. A cable is attached to the door and routed through the vehicle body via pulleys so that pulling the first cable end opens the door and pulling the second cable end closes the door. A motorized drive mechanism includes first and second reels mounted concentrically and having the cable ends wrapped respectively about the reels in opposite directions. A motor drives in one direction rotating the first reel to open the door and is reversible to rotate the second reel to close the door. Each of the reels has a large diameter portion for winding the cable to provide relatively high speed and low force door movement over the greatest portion of travel and a small diameter portion for winding the cable to provide relatively low speed and high force movement of the door during the lesser portion of travel of the door closest to the closed position. The reels have cable seat grooves to receive the cable and a spiral ramp groove to connect the large and small diameter portions. A tension retaining spring acts between the two reels to always maintain the cable under tension.