Abstract:
An overhead door assembly for opening and closing a door opening comprises a plurality of door sections (10) having hinges (12) for hingedly joining the door sections (10) together. A pivot (26) on an upper end region of each door section (10) pivotally connects a tandem arm (28). Each tandem arm (28) has at opposite ends thereof a rotatably mounted roller (20). A lowermost door section has a roller (21) rotatably mounted at the lowermost region of the door section. Two lead arms (29) each have a first end pivotally connected to the pivot (26) of the uppermost door section and an opposite end having a rotatably mounted roller (25). An axle (14) is rotatably mounted above the door opening (22) and having springs (16) for urging the axle (14) to rotate in opposite senses. Drums (15) are fixedly mounted on the axle (14) and aligned with each side of the door opening (22). Two cables (19), each extend from the lowermost door section about the drum (15) and extending to the opposite end of the lead arm (29). Two guides (24) extend upwardly along each side of the door opening (22) for guiding the door sections (10) as the door travels to open and close the door opening (22). A motor (32) drives the axle (14) in one sense tensioning the cable (19) extending from the lowermost door section for opening the door and for driving the axle (14) in an opposite sense tensioning the cable (19) extending at the opposite end of the lead arm (29) for closing the door.
Abstract:
The invention describes an automatic sliding door with at least one panel (1, 1') and with an auxiliary drive unit (14). When the door closes normally, energy is supplied to the auxiliary drive where it is stored. In the event of a power failure and/or simultaneous interruption of the normal drive, this stored energy is then used to open the door. The auxiliary drive (14) is preferably a rubber element which is under tension when the door is closed. In the event of a power failure, a coupling (20) between the drive motor (9, 22) and an actuation device (19) is opened and the rubber element contracts, thus opening the door.
Abstract:
An actuating mechanism for sliding doors provided on the passenger side of conventional panel type trucks, commonly called vans, is intended to be either installed in the vehicle at the time of its original manufacture, or installed at any later time, without substantial modification of the vehicle. A winch assembly (44) including two separate winding drums (74, 86) on a common shaft (87) and driven by the shaft through springs (162, 174) and a positive driver (170), is mounted over the rear wheel well of such a vehicle. A guide assembly (50) including a pulley (54) and a pivoting guide member (62) is installed in an aperture cut in the door frame. A single pulley (56) is installed at the lower rear corner of the door opening, and a guide tube (58) is installed in the door. A flexible cable (52) is connected to an arm added to the latch operating mechanism, and extends through the guide tube (58), around the pulley (56), through the guiding assembly (50) to the winch assembly (44), for opening the door. A second cable (60) is attached to the rear edge of the door, passed around the pivoting guide (62) of the guide assembly, and fastened to the winch assembly (44) for closing the door. As the door closes, the pivoting guide (62) guides the flexible cable (60) to a position perpendicular to the rear edge of the door to pull the rear edge of the door into latched position. A switch (55) operated by the pivoting guide (62) connects an additional winding on an electric motor (138) to provide a high force for latching the door, allowing low force to be used for sliding the door to reduce the chance of personal injuries while closing the door.
Abstract:
A vehicle interior assembly includes a frame and a fall away door that closes off an opening in the frame when in a closed position. The door moves between the closed position and an open position via sequential vertical and horizontal movements. From the closed position, the door first drops vertically to a dropped position. A final portion of this vertical movement may be damped movement. From the dropped position, the door moves horizontally to the open position, at which the door is concealed from view from the exterior of the assembly. Various guides can be provided to define the movement path of the door. Various types of non-visible sensors can be used to detect a user's intention to open and close the door.
Abstract:
A door component has a controllable damping device containing a magnetorheological fluid as a working fluid. Two connection units can move relative to one another. One of the two connection units can be connected to a support structure and the other of the two connection units can be connected to a moveable door unit of a vehicle in order to damp a movement of the door unit between a closed position and an open position under control of a control device. The damping device has an electrically adjustable magnetorheological damping valve which is current-less in its adjusted state. A damping property of the damping device is continuously adjusted as needed via an electrical adjustment of the damping valve.
Abstract:
Device for opening cabinet door of cabinet body. Cabinet door is attached to cabinet body by self-closing hinges. Cabinet door is held in closed position at a small distance from the front of cabinet body. In order to allow cabinet door to be opened without gripping elements, without hindering the self-closing of the hinges, there is a unit having ejection piston with a locking apparatus and tension rod in cabinet body. Ejection piston is supported in the unit by compression spring, and tension rod is supported in the unit by tension spring. Ejection piston and tension rod are coupled to each other by a control apparatus having a freewheel, and thus by tapping on cabinet door the opening of cabinet door can be initiated and cabinet door can be brought into an intermediate position. In the intermediate position, cabinet door can be grasped by a hand and opened further.
Abstract:
An electromechanical strut and method of moving a closure member of a vehicle between an open position and a closed position is provided. The electromechanical strut includes a power drive unit including a motor, a leadscrew, a planetary gearset operably connecting the motor to the leadscrew, and an electromechanical brake assembly. The electromechanical strut further includes a telescoping unit including an extensible tube and a drive nut for converting rotary motion of the leadscrew into linear motion of the telescoping unit. The electromechanical brake assembly is selectively moveable between an engaged state, wherein the leadscrew is prevented from rotating to prevent relative axial movement between the power drive unit and the telescoping unit, and a disengaged state, wherein the leadscrew is permitted to rotate to allow relative axial movement between the power drive unit and the telescoping unit.
Abstract:
A sliding door system including a transom; at least one door leaf movable along the transom; an endless traction mechanism traction-resistantly connected to the at least one door leaf; a drive device for driving the endless traction mechanism, the drive device comprising a driven pulley guiding the endless traction mechanism; a rotational body torsion-resistantly connected to the driven pulley and rotatably supported by the transom, the rotational body comprises a coupling member; a locking bolt displaceably supported by the transom; and an electromechanical actuation device. The electromechanical actuation device is operable to cause the locking bolt to interlock with the coupling member of the rotational body to lock the at least one door leaf relative to the transom.
Abstract:
Movable partition systems include an elongated, fixed drive member extending along a track, a partition that is automatically and manually movable along the track, and a motor carried by the movable partition configured to drive a rotatable drive member that is engagable with the elongated, fixed drive member. The rotatable drive member may be engaged with, and disengaged from, the fixed drive member. Methods of moving a partition along a track include actuating a motor carried by a movable partition to drive rotation of a drive member while the drive member is engaged with an elongated, fixed drive member, and manually moving the partition along the track while the rotatable drive member is disengaged from the fixed drive member. Methods of installing a movable partition system include configuring a rotatable drive member to be capable of engagement with, and disengagement from, an elongated, fixed drive member.
Abstract:
A drive device for embarkation and disembarkation devices of public transportation vehicles includes a drive unit arranged within and for driving a rotary column. The drive unit rotates the rotary column about the rotary column longitudinal axis Z-Z during opening and closing processes of the embarkation and disembarkation devices. The drive device is supported on the vehicle. The drive unit includes a drive motor, a non-self-locking reduction gear, and a controllable blocking component with which a rotation of the rotary column can be blocked. The drive device further includes a sensor for detecting the magnitude of an external force, wherein the force acts on the drive device. The drive device further includes an element for analyzing signals of the sensor and for triggering the blocking effect of the blocking component when an external force measured by the sensor exceeds a threshold.