Abstract:
An automatic door opener (10) for opening or closing a door (28) includes a motor (14) driving a drive shaft (50) and an opener arm (18) connected to the door (28) and being responsive to rotation of the drive shaft (50) for moving the door (28) to an open or closed position. A clutch (46) operable to disengage the drive shaft (50) from the opener arm (18) is provided in the event of the door (28) engaging an obstacle, electric power being unavailable, or the door being fully open or fully closed. The door opener (10) may also include a brake (48) for selectively preventing movement of the door (28). Various embodiments of the invention are provided, including an electromagnet (80) and an electromagnetic brake (114).
Abstract:
This invention relates to a type of safety door central release device which can be used to close the safety door automatically when electric power is disrupted. It comprises a cord that is tied to a mechanism having potential energy on one end, and extended to a far distance on the other end; a pair of crank arms of which one end molded as a grip and gripping the cord, and the other end is connected to a sliding bar, having potential energy which assists the grip in release the cord. When electric power is supplied, the sliding bar will be attracted to an electromagnet. As a result, while electric power is disrupted, the release device can immediately release the cord. Due to release of the cord, a brake for a door operator is released by means of the mechanism such that the safety door slides down and then it is closed.
Abstract:
The present invention is a hinge assembly for engaging an appliance door to an appliance, such that rotational forces generated by the door as a function of the door position are balanced against a rotation force exerted about an axis of rotation for the door. The hinge assembly may be engaged to an interface using a locking bar to prevent translation of the adapter plate relative to the interface. The hinge assembly may further have a plunger incorporating an ovoid shaped retention pin bore for retaining an elastic element to the plunger.
Abstract:
A hinge pivotally connects to a cover and a base of an electrical appliance and has a stationary-positioning element, a rotating-positioning element and a buffering spacer. The stationary-positioning element is mounted securely in the base and has at least one positioning protrusion. The rotating-positioning element is mounted securely in the cover and has at least one positioning detent corresponding to the positioning protrusion when the cover is closed. The buffering spacer is attached to the rotating-positioning element to let the stationary-positioning element and the rotating-positioning element in constant contact, which results in friction between the stationary-positioning element and the rotating-positioning element being uniform. Therefore, the hinge as described makes less noise.
Abstract:
An adjustment device as well as a corresponding method for operation of the final control element in a motor vehicle are specified. In this case, a motor is provided for operation of the final control element, a sensor element is provided for detection of a parameter that characterizes the motor and a control unit, which is connected to the sensor element and to the motor, is provided for control of the motor. The control unit is designed to record the profile of a parameter that characterizes the motor, or of a signal that is derived from it, over the actuating movement, to compare the recorded profile with a switching-off threshold that is dependent on the actuating movement, to stop and/or to reverse the drive if the switching-off threshold is exceeded, and to change the switching-off threshold as a function of the time for which the final control element is switched off. This allows reliable jamming protection, in which the probability of spurious detection of jamming is reduced.
Abstract:
A rotary damper includes a housing and a rotor rotatable in the housing. A clutch is movable toward and away from the housing when said rotor is rotated in first and second directions.
Abstract:
A hinge is mounted in an appliance with a cover and a base and has a stationary bracket, multiple resilient spacers and a pintle. The stationary bracket is attached to the base of the appliance and has a tubular sleeve. The resilient spacers are mounted securely in the sleeve. The pintle is attached to the cover of the appliance and is mounted rotatably in the resilient spacers. With multiple resilient spacers, the area to provide friction between the resilient spacers and the pintle is increased. Therefore, the friction between the resilient spacers and the pintle is increased and is sufficient to easily hold the cover at any desired angle.
Abstract:
A drive for pivoting a flap arranged on a vehicle body about a pivot axis includes a non-self locking electric motor and a drive train connecting the motor to the flap. The motor can be switched between a driving active state and a non-driving inactive state, the motor being moveable in the inactive state at least substantially without any resistance. A braking device blocks the drive train in the inactive state of the drive motor and unblocks the drive train in the active state of the motor.
Abstract:
A drive for pivoting a flap on a body of a vehicle about a pivot axis, with a drive motor, by means of which an output driving the flap pivotably can be driven rotatably via a drive train having an epicyclic gear. The epicyclic gear has a sun gear, an internally toothed rim, a planet gear which is in engagement with the sun gear and the internally toothed rim, and a planet carrier which carries the planet gear and which is connected fixedly in terms of rotation to a shaft coaxial with respect to the axis of rotation of the planet carrier. The rotational movement of a component of the epicyclic gear can be braked by a brake. In particular, the brake can stop the rotational movement of the internally toothed rim, the sun gear can be driven rotatably by the drive motor, and the shaft of the planet carrier can form the output.
Abstract:
An anti-pinch system of a vehicle closure includes a detection system for detecting pinching and a clutch to disconnect the vehicle closure from a closure driving mechanism following detection of pinching by the detection system. The closure drive mechanism can be disengaged to prevent an increase in pinching during the time required to reverse the movement of the closure driving mechanism.