Abstract:
A control system is provided for controlling the movement of the piston (10) of the fluid-pumping device (1), the piston (10) being displaceable in a block (5) of the fluid-pumping device (5) and being driven by a motor (2) fed by a voltage (V), comprising a semiconductor electronic system (T) cyclically applying the voltage (V) to the motor (2) to move the piston (10), a resistive element (Rb), a capacitive element (Cy), a piston-position sensor (S) to indicate the passage of the piston (10) by a point (R) at the block (5), the capacitive element (Cy) being charged by means of the resistive element (Rb), at each cycle of application of voltage (V) to the motor (2), the capacitive element (Cy) being discharged, at least partly, when the piston (10) passes by the point (R) .
Abstract:
In an overload protective apparatus of a compressor and its method capable of preventing damage of a compressor due to overload by removing an overload protector and using an operation control device operating the compressor, the overload protective apparatus includes a reference current setting unit for presetting a reference current value for operating the compressor normally; a microcomputer for generating a power cutoff signal when the detected current value is greater than the reference current value and generating a power supply signal when the detected current value is smaller than the reference current value; and a power supply unit for cutting off power applied to the compressor on the basis of the power cutoff signal or applying power to the compressor on the basis of the power supply signal.
Abstract:
Verfahren zur Ermittlung des Hubes einer hubvariablen Hubkolbenmaschine, wie z.B. eines Taumelscheibenkompressors oder eines Schwenkscheibenkompressors oder eines Schwenkringkompressors, insbesondere für Klimaanlagen in Kraftfahrzeugen.
Abstract:
Disclosed is an apparatus and method for controlling a reciprocating compressor capable of inexpensively and exactly controlling a position of a piston in a cylinder, by which a top clearance is minimized according to the information of a phase difference between a square wave of a piston stroke and a square wave of a current supplied to the compressor. The apparatus comprises a driving section for driving the reciprocating compressor by varying an angle of ignition in response to a control signal; a current phase detecting section for outputting a square wave corresponding to the detected current supplied to the compressor; a stroke phase detecting section for outputting a square wave corresponding to a stroke of the compressor; and a control section for controlling the angle of ignition of the driving section according to the phase difference between the square wave produced from the current phase detecting section and the square wave produced from the stroke phase detecting section.
Abstract:
A reciprocating compressor with a linear motor, having a piston (1) reciprocating inside a cylinder (2); a cylinder head (5) provided with suction and discharge orifices (5a, 5b) and a valve means (10) mounted inside the cylinder (2) and having an operative position, seated against the discharge orifice (5b), defined when the top of the piston (1) is within a certain distance (D) from the cylinder head (5), said distance being defined, so that, at the end of the compression stroke of the piston (1), be reached inside the cylinder (2) a determined pressure that will result in a force on the piston (1) opposite to that force which is impelling said piston (1) and which is sufficient to interrupt its compression stroke before impacting the cylinder head (5).
Abstract:
The invention relates to a dosing dispenser (1) for multicomponent mixtures in which the components are accommodated in cartridges (14). A pump (18) is assigned to each cartridge (14). Said pump dips with the pump base thereof into an indentation (108) of the cartridge (14) thus minimizing the axial length of the dosing dispenser (1).
Abstract:
A two stage reciprocating compressor and associated HVAC systems and methods are disclosed. The reciprocating compressor includes a crankshaft having an eccentric crankpin, a reversible motor for rotating the crankshaft in a forward and a reverse direction, and an eccentric, two position cam rotatably mounted over the crankpin. The crankshaft and cam combine to cause the piston to have a first stroke when the motor operates in the forward direction and a second stroke when the motor operates in the reverse direction. The cam and crankpin also include stabilization means to restrict the relative rotation of the cam about the crankpin. A lubrication system is provided to lubricate the engaging surfaces of the crankshaft and cam and between the cam and the bearing surface of the connecting rod. There is also provided a control for selectively operating the motor either in the forward direction at a first power load or in the reverse direction at a reduced second power load. A protector for the motor is also provided. In addition, the application of the reciprocating compressor to both air conditioning and heat pump systems is disclosed.
Abstract:
A liquid pumping apparatus for pumping liquids, more specifically a linear peristaltic pump apparatus. The apparatus consists of a high durometer compressible elastomeric liquid flow tube (12), an infeed valve assembly (26), an outfeed valve assembly (38), an extensible and retractable actuator anvil (34) having a round surface which engages the flow tube (12) at all times, an opposed anvil (24.1) having a round surface in engagement with the flow tube at all times, the flow tube being held between the anvils (34, 24.1) in a slightly compressed state when the anvil (34) is retracted, and a control assembly (100) for causing the movable anvil to be sequentially extended and retracted to cause flow within the flow tube (12) from the infeed valve assembly (26) to the outfeed valve assembly (38). With this apparatus the lumen of the flow tube (12) to the sides of the anvils is not completely reduced to zero volume during displacement compression whereby gas embolisms do not erupt or explode when discharged. Two principal embodiments are disclosed, one having infeed and outfeed check valves which oclude the flow tube, and the other having check valves.