Abstract:
A two-stage reciprocating compressor is provided. The compressor includes a reversible motor that rotates a crankshaft. The crankshaft is connected to a piston by a mechanical system. The mechanical system drives the piston at a full stroke between a bottom position and a top dead center position when the motor is operated in a forward direction. The mechanical system drives the piston at a reduced stroke between an intermediate position and the top dead center position when the motor is operated in the reverse direction. The compressor also includes a control for selectively operating the motor in either the forward direction at a first preselected, fixed speed or in the reverse direction at a second preselected fixed speed.
Abstract:
A two stage reciprocating compressor and associated HVAC systems and methods are disclosed. The reciprocating compressor includes a crankshaft having an eccentric crankpin, a reversible motor for rotating the crankshaft in a forward and a reverse direction, and an eccentric, two position cam rotatably mounted over the crankpin. The crankshaft and cam combine to cause the piston to have a first stroke when the motor operates in the forward direction and a second stroke when the motor operates in the reverse direction. The cam and crankpin also include stabilization means to restrict the relative rotation of the cam about the crankpin. A lubrication system is provided to lubricate the engaging surfaces of the crankshaft and cam and between the cam and the bearing surface of the connecting rod. There is also provided a control for selectively operating the motor either in the forward direction at a first power load or in the reverse direction at a reduced second power load. A protector for the motor is also provided. In addition, the application of the reciprocating compressor to both air conditioning and heat pump systems is disclosed.
Abstract:
A two stage reciprocating compressor and associated HVAC systems and methods are disclosed. The reciprocating compressor includes a crankshaft having an eccentric crankpin, a reversible motor for rotating the crankshaft in a forward and a reverse direction, and an eccentric, two position cam rotatably mounted over the crankpin. The crankshaft and cam combine to cause the piston to have a first stroke when the motor operates in the forward direction and a second stroke when the motor operates in the reverse direction. The cam and crankpin also include stabilization means to restrict the relative rotation of the cam about the crankpin. A lubrication system is provided to lubricate the engaging surfaces of the crankshaft and cam and between the cam and the bearing surface of the connecting rod. There is also provided a control for selectively operating the motor either in the forward direction at a first power load or in the reverse direction at a reduced second power load. A protector for the motor is also provided. In addition, the application of the reciprocating compressor to both air conditioning and heat pump systems is disclosed.
Abstract:
A two stage reciprocating compressor and associated HVAC systems and methods are disclosed. The reciprocating compressor includes a crankshaft having an eccentric crankpin, a reversible motor for rotating the crankshaft in a forward and a reverse direction, and an eccentric, two position cam rotatably mounted over the crankpin. The crankshaft and cam combine to cause the piston to have a first stroke when the motor operates in the forward direction and a second stroke when the motor operates in the reverse direction. The cam and crankpin also include stabilization means to restrict the relative rotation of the cam about the crankpin. A lubrication system is provided to lubricate the engaging surfaces of the crankshaft and cam and between the cam and the bearing surface of the connecting rod. There is also provided a control for selectively operating the motor either in the forward direction at a first power load or in the reverse direction at a reduced second power load. A protector for the motor is also provided. In addition, the application of the reciprocating compressor to both air conditioning and heat pump systems is disclosed.
Abstract:
An electrical control system for an induction motor for achieving optimum efficiency at both full and partial loads at markedly reduced electrical components costs while maximizing reliability over the range of load, and for achieving a two step motor power output in a greatly simplified manner, the circuit having an electrical induction motor adapted for connection to line electrical power at maximum motor operating frequency, and to a second source of electrical power at approximately one half of the maximum operating frequency, wherein an electrical switch is provided for selectively connecting each power source to the motor, wherein the second source is a reduced frequency wave form generator for producing a reduced frequency wave form.
Abstract:
A stabilizing structure for a throw adjusting eccentric cam in a two-stage reciprocating compressor is provided. The compressor includes a block that has at least one cylinder with an associated compression chamber and piston, a crankshaft that includes an eccentric crankpin, and a reversible motor for rotating the crankshaft in a forward and a reverse direction. An eccentric, two position cam is rotatably mounted over the crankpin. The cam rotates to and operates at a first position relative to said crankpin when the motor is running in the forward direction and rotates to and operates at a second position relative to said crankpin when the motor is running in the reverse direction. The combined eccentricities of the crankpin and the cam cause the piston to have a first stroke when the motor operates in the forward direction and a second stroke when the motor operates in the reverse direction. There is also provided a control for selectively operating the motor either in the forward direction or in the reverse direction.
Abstract:
For a refrigerant compressor having two capacities, a camming structure operable in different manners depending on direction of crankshaft rotation, to achieve each capacity while providing top dead center piston operation thru the use of a circular cam bushing which is eccentrically, rotatably mounted on the crankshaft eccentric and within the connecting rod bearing wherein the combined eccentricities of the bushing and the eccentric equal the primary stroke of the piston. A first stop mechanism is provided for stabilizing the bushing on the eccentric upon rotation of the crankshaft in one direction whereby the eccentricities of the eccentric and bushing become aligned and remain so during synchronous rotational orbiting motion of the eccentric and bushing during rotation of the crankshaft for producing full stroke and full capacity. A second stop mechanism is provided for stabilizing the bushing within the bearing upon opposite rotation of the crankshaft whereby the bushing eccentricity becomes and remains substantially aligned with the connecting rod stroke axis while the eccentric moves alone thru its rotational orbit for producing reduced stroke and reduced capacity. A unique electrical control system is also provided for a reversible electric induction motor for selectively and efficiently driving the compressor crankshaft in either direction for providing the different capacities.
Abstract:
For a refrigerant compressor having two capacities, a camming structure operable in different manners depending on direction of crankshaft rotation, to achieve each capacity while providing top dead center piston operation thru the use of a circular cam bushing which is eccentrically, rotatably mounted on the crankshaft eccentric and within the connecting rod bearing wherein the combined eccentricities of the bushing and the eccentric equal the primary stroke of the piston. A first stop mechanism is provided for stabilizing the bushing on the eccentric upon rotation of the crankshaft in one direction whereby the eccentricities of the eccentric and bushing become aligned and remain so during synchronous rotational orbiting motion of the eccentric and bushing during rotation of the crankshaft for producing full stroke and full capacity. A second stop mechanism is provided for stabilizing the bushing within the bearing upon opposite rotation of the crankshaft whereby the bushing eccentricity becomes and remains substantially aligned with the connecting rod stroke axis while the eccentric moves alone thru its rotational orbit for producing reduced stroke and reduced capacity. A unique electrical control system is also provided for a reversible electric induction motor for selectively and efficiently driving the compressor crankshaft in either direction for providing the different capacities.
Abstract:
An electrical control system for an induction motor for achieving optimum efficiency at both full and partial loads at markedly reduced electrical components costs while maximizing reliability over the range of load, and for achieving a two step motor power output in a greatly simplified manner, the circuit having an electrical induction motor adapted for connection to line electrical power at maximum motor operating frequency, and to a second source of electrical power at approximately one half of the maximum operating frequency, wherein an electrical switch is provided for selectively connecting each power source to the motor, wherein the second source is a reduced frequency wave form generator for producing a reduced frequency wave form.
Abstract:
An electrical control system for an induction motor for achieving optimum efficiency at both full and partial loads at markedly reduced electrical components costs while maximizing reliability over the range of load, and for achieving a two step motor power output in a greatly simplified manner, the circuit having an electrical induction motor adapted for connection to line electrical power at maximum motor operating frequency, and to a second source of electrical power at approximately one half of the maximum operating frequency, wherein an electrical switch is provided for selectively connecting each power source to the motor, wherein the second source is a reduced frequency wave form generator for producing a reduced frequency wave form.