Abstract:
A device and system for facilitating polymerase chain reaction analysis including a light source (46), photodiodes (44), multi- branched waveguides (32), and filters (40) that occupy minimal space and allow reduced sample read time and rapid reading of multiple light wavelengths.
Abstract:
An analyte measuring device (5) for monitoring, for example, levels of a tissue analyte (e.g., bilirubin), includes a number of narrow band light sources (10), each narrow band light source being structured to emit a spectrum of light covering a number of wavelengths, and a number of detector assemblies (15) configured to receive light reflected from the transcutaneous tissues of a subject. Each of the detector assemblies includes a filter (20) and a photodetector (25), each filter being structured to transmit a main transmission band and one or more transmission sidebands, wherein for each narrow band light source the spectrum thereof includes one or more wavelengths that fall within the transmission band of at least one of the filters, and wherein for each narrow band light source the spectrum thereof does not include any wavelengths that fall within the one or more transmission sidebands of any of the optical filters.
Abstract:
An imaging device (100) being configured for optoacoustic imaging of an object (1) comprises an illumination device (10) including optical components arranged for illuminating the object (1), a detector device (20) arranged for detecting acoustic signals created in the object (1), and a container device (50) including a tank (51) arranged for accommodating the detector device (20), the object (1) and a matching transmission medium (53), wherein the container device (50) further includes a holding device (55) being adapted for positioning and moving the object (1) relative to the illumination device (10) and the detector device (20), the optical components are arranged in the tank (51) for illuminating the object (1) from different directions, and the detector device (20) comprises an array (21) of detector elements (22) which is arranged in the tank (51). According to a preferred embodiment, the holding device comprises a membrane (55) arranged for accommodating the object (1), wherein the membrane separates the object (1) and the matching transmission medium (53) from each other. Furthermore, an imaging method of optoacoustic imaging of an object (1) using the imaging device (100) is described.
Abstract:
An inspection apparatus includes a handset (302) and an elongated inspection tube (112) extending from the handset. For reduction of heat energy radiating from one or more components of the apparatus, the apparatus includes a particularly designed heat sink assembly (928).
Abstract:
The present invention is directed to solving the problems associated with the detection of surface defects on metal bars as well as the problems associated with applying metal flat inspection systems to metal bars for non-destructive surface defects detection. A specially designed imaging system, which is comprised of a computing unit, line lights and high data rate line scan cameras, is developed for the aforementioned purpose. The target application is the metal bars (1) that have a circumference/cross-section-area ratio equal to or smaller than 4.25 when the cross section area is unity for the given shape, (2) whose cross-sections are round, oval, or in the shape of a polygon, and (3) are manufactured by mechanically cross-section reduction processes. The said metal can be steel, stainless steel, aluminum, copper, bronze, titanium, nickel, and so forth, and/or their alloys. The said metal bars can be at the temperature when they are being manufactured. A removable cassette includes various mirrors. A protection tube isolates the moving metal bar from the line light assembly and image acquisition camera. assembly and image acquisition camera. A contaminant reduction mechanism applies a vacuum to remove airborne contaminants.
Abstract:
The present invention relates generally to the field of biochemical laboratory instrumentation for different applications of measuring properties of samples on e.g. microtitration plates and corresponding sample supports. The object of the invention is achieved by providing an optical measurement instrumentation wherein a sample (281-285) is activated (212AS, 218AS) and the emission is detected (291, 292), wherein between the activation and detection phases of measuring the sample, a shift is made in the relative position between the sample and means (218) directing the activation radiation to the sample as well as in the relative position between the sample and the means (293) receiving the emission radiation from the sample. This can be implemented e.g. by moving (299) the sample assay plate and/or a measuring head between the activation and emission phases of a sample. The invention allows a simultaneous activation of a first sample and detecting emission from a second sample thus enhancing efficiency of the measurement.
Abstract:
Computation -saving techniques and stability-adding techniques provide for fast, accurate reconstructions of a time series of images involving large scale 3D problems, such as real-time image recovery in an optical tomography imaging system. A system equation for a target medium (116) such as a tissue is solved using a Normalized Difference Method (NDM) (250). Because of the inherent stability of the NDM solutions, a weight matrix (W) of the system equation can be provided for a given point in a time series (220), then reused without recalculation at subsequent points. Further saving are achieved by decomposing W using singular value decomposition or direst matrix decomposition, transforming it to reduce its dimensions, and/or scaling it to achieve a more stable numerical solution. Values of measured energy (112) emerging from the target medium are back-substituted into the system equation for the different points to obtain the target medium properties.
Abstract:
The present invention provides a method for directly determining the concentration of a target species, such as Fries product, in a composition comprising aromatic carbonate chain units. In an exemplary embodiment, the method includes the steps of irradiating a portion of the composition with electromagnetic radiation at an excitation wavelength sufficient to cause the target species to emit a fluorescence spectrum; detecting at least a portion of the fluorescence spectrum; and determining the concentration of the target species form the fluorescence spectrum. In addition to detecting Fries product in formed polycarbonate materials, the method can also be utilized to directly determine the concentration of a target species in parallel polycarbonate reactor systems.