Abstract:
Methods and systems for performing simultaneous spectroscopic measurements of semiconductor structures at ultraviolet, visible, and infrared wavelengths are presented herein. In another aspect, wavelength errors are reduced by orienting the direction of wavelength dispersion on the detector surface perpendicular to the projection of the plane of incidence onto the detector surface. In another aspect, a broad range of infrared wavelengths are detected by a detector that includes multiple photosensitive areas having different sensitivity characteristics. Collected light is linearly dispersed across the surface of the detector according to wavelength. Each different photosensitive area is arranged on the detector to sense a different range of incident wavelengths. In this manner, a broad range of infrared wavelengths are detected with high signal to noise ratio by a single detector. These features enable high throughput measurements of high aspect ratio structures with high throughput, precision, and accuracy.
Abstract:
A simple and compact apparatus, and a method, for determining the characteristics of a number of fluids used in the truck and automotive industries including coolant, bio-diesel, gas-ethanol and diesel engine fluid (DEF). The apparatus includes a sample container providing optical paths of different lengths for making measurements on a sample. The dual path length design allows the apparatus to capture both NIR and UV spectral ranges. The qualitative and quantitative properties of the fluid under test are compared to test results under normal conditions or to the properties of unused fluid. Two light sources are used within a spectrometer with each source being associated with a different optical path length.
Abstract:
Systems and methods for measuring a target in a sample, the target being capable of generating an emitted light in response to an excitation light. In an example system, an excitation light source generates the excitation light along an excitation optical path. An attenuation filter arrangement selectively adds an attenuation filter to the excitation optical path. The attenuation filter attenuates the excitation light by a corresponding attenuation factor. The excitation light exits the attenuation filter arrangement along the excitation optical path to illuminate the sample. A light energy detector receives the emitted light generated in response to the excitation light, and outputs a measured signal level corresponding to an emitted light level. If the light energy detector indicates an overflow, signal measurement is repeated with attenuation filters of increasing attenuation factors until the measured signal level does not overflow.
Abstract:
Methods and apparatus for article authentication include an exciting radiation generator that exposes an area of the article to exciting radiation, and at least two radiation detectors that detect emitted radiation from the area in a first band and in a second band that does not overlap the first band. The first band corresponds with a first emission sub-band of an emitting ion, and the second band corresponds with a second emission sub-band of the same emitting ion. A processing system calculates a comparison value that represents a mathematical relationship (e.g., a ratio) between a first intensity of the emitted radiation in the first band with a second intensity of the emitted radiation in the second band, and determines whether the comparison value compares favorably with an authentication parameter. When the comparison value compares favorably with the authentication parameter, the article is identified as being authentic.
Abstract:
The present invention may include methods and apparatus for the detection of explosives using near infrared or infrared spectroscopy to detect nitro or even carbonyl groups. Embodiments may include, at least one radiation emitter may emit at least one wavelength towards a target. At least one reflected wavelength may be generated after the wavelength collides with the target. A reflected wavelength may then be detected by at least one detector and analyzed with an analyzer.
Abstract:
After a liquid sample between a sample-holding platform 11 and a window plate 22 is measured, a window plate holder 23 is raised, and a head 14 is moved from a standby position into the gap between the window plate 22 and the sample-holding platform 11. Then, the window plate holder 23 is lowered so as to press the window plate 22 onto the head 14 until the head 14 touches the sample-holding platform 11 below. Then the head 14 is swung back to the original position, whereby a wipe material 40 fitted on the head 14 simultaneously wipes off the liquid sample from both the lower surface of the window plate 22 and the upper surface of the sample-holding platform 11. Pressing the arch springs 35 enables the wipe material 40 to be easily attached to or detached from the head 14.
Abstract:
The apparatus and methods herein provide light sources and spectral measurement systems that can improve the quality of images and the ability of users to distinguish desired features when making spectroscopy measurements by providing methods and apparatus that can improve the dynamic range of data from spectral measurement systems.
Abstract:
A Fourier Transfer Infrared (FTIR) spectrophotometer having reduced baseline noise. The system and method include internal or external optical adapters having a moveable beamsplitter for splitting the source light beam into a reference beam and a sample beam, and may include a variable bandpass filter, variable preamplifier and reversed biased photodiodes.
Abstract:
Fluorescence reader (10) for an optical assay arrangement comprising a polymeric sample substrate (1) having a reaction site-surface and a substrate surface (3), the fluorescence reader comprising a light source (5) arranged to illuminate the reaction site-surface through the substrate surface, and a detector device (6) arranged to detect fluorescent light emitted from said reaction site-surface and transmitted through the substrate surface, the substrate surface provided with total-internal-reflection suppressing means (15).