Abstract:
Semiconductor structures for optoelectronic sensors with an infrared (IR) blocking filter and methods for using such sensors with post-detection compensation for IR content that passes through the IR blocking filter are provided herein.
Abstract:
A method for providing an intensity or brightness measurement using a digital image-capturing device comprising: selecting a target area within a field of view of the image-capturing device, the target area containing pixels; determining the brightness of pixels in the target area; accumulating the brightness values of the pixels in the target area; and determining a pixel value representative of the pixels in the target area. A device for making color measurements comprising an image-capture device, a processor or logic device, and a memory location for accumulating color data, and the processor or logic device is programmed to perform color measurements by accumulating the data for pixels located in the target area in memory, and determining a representative color value.
Abstract:
An imaging spectrometer provides substantially simultaneous areal spectroscopy and image generation to provide improved analysis of possible skin cancer.
Abstract:
A spectrometer is provided including a camera and an axial symmetric camera mount configured to receive the camera and to rotate. The spectrometer furthers include an input for providing optical radiation to a spectrometer system; a diffraction grating for dispersing the optical radiation along a prescribed plane; at least one lens for focusing wavelength-dispersed light onto at least one array of a detector of optical radiation, wherein the camera has at least one linear array of elements for detecting optical radiation; a mechanical housing, wherein the axial symmetric camera mount is configured to couple the camera to the mechanical housing; and a means for rotating the camera coupled to the mechanical housing about an axis. Related systems and methods are also provided.
Abstract:
A hyperspectral imaging system and a method are described herein for using an array of optical homogenizing elements to reduce spectral noise in an image of a real-world scene. In one embodiment, the hyperspectral imaging system and method use the array of optical homogenizing elements for homogenizing a spatial, an angular, and a polarization distribution of light from different elements within the real-world scene before it is measured by a spectrometer.
Abstract:
Fiber optic probe scatterometers for spectroscopy measurements are disclosed. An example device includes an optically transparent illumination tube, an opaque tube, an inner surface of the opaque tube being adjacent an outer surface of the illumination tube and the illumination tube being disposed within the opaque tube, and an optical fiber disposed within and spaced a first distance from the illumination tube, wherein the opaque tube is to be coupled to a spectrometer and an illumination source to provide a light signal along the illumination tube and to collect a scattered light signal via the optical fiber for the spectrometer.
Abstract:
A method and device to determine quantitatively the surface optical characteristics of an object of reference made up of a plurality of optically differentiable layers. The device includes lighting and image capture means, connected to analysing means which execute the method to obtain the parameters of the repair material components best fitting the optical characteristics of the dental environment of the subject under treatment. The result of the analysis through the method in the invention consists mainly in the identification of each one of the various materials which should constitute the different layers, as well as their respective thicknesses, and which are to lead to a dental repair with optimum optical characteristics. It is thus achieved that the repair be visually imperceptible, both under natural light and under ultraviolet light.
Abstract:
An improved method and apparatus for a device with minimized optical cross-talk are provided. In one example, the device includes a filtering material selected to maximize the attenuation of signals causing cross-talk while minimizing the attenuation of desired signals.
Abstract:
A spectroscope includes an emitting portion from where light is output, a dispersive element which is disposed on a side of the light emitting portion, to which the light is output, an incidence portion on which, light dispersed by the dispersive element is incident, and a temperature-compensating element which is disposed between the emitting portion and the incidence portion, and which is such that, an angle of incidence of the light dispersed on the incidence portion becomes almost constant with respect to a change in temperature in an operating temperature range. Moreover, the optical apparatus has such spectroscope in which temperature is compensated.
Abstract:
An apparatus includes an optical filter having first and second passbands that are different, the optical filter including selectively operable first passband adjusting structure that varies a characteristic of the first passband without influencing the second passband. According to a different aspect, a method includes filtering radiation with an optical filter having first and second passbands that are different, and selectively varying a characteristic of the first passband without influencing the second passband.