Abstract:
A gas absorption spectroscopy system and method are provided. A sealed chamber is provided with a reference gas having a known moisture concentration. An illumination source is disposed in the sealed chamber and is configured to generate an illumination beam. A measurement cell is coupled to the sealed chamber and is configured for exposure to a gas sample such that illumination travelling through the measurement cell passes through the gas sample. A process window is disposed between the sealed chamber and the measurement cell. The process window is configured to receive the illumination beam from the illumination source and reflect a first portion of illumination while allowing a second portion of illumination to pass into the measurement cell. A reference detector is disposed to receive the first portion of illumination and provide a reference detector signal. A measurement detector is disposed to receive the second portion of illumination after the second portion of illumination has passed through the measurement cell and provide a measurement detector signal. A controller is coupled to the reference detector and the measurement detector and is configured to provide a compensated moisture output based on the reference detector signal and the measurement detector signal.
Abstract:
A method of calibration-free scanned-wavelength modulation spectroscopy (WMS) absorption sensing is provided by obtaining absorption lineshape measurements of a gas sample on a sensor using 1/-normalized WMS-2/j where an injection current to an injection current-tunable diode laser (TDL) is modulated at a frequency ̂ where a wavelength modulation and an intensity modulation of the TDL are simultaneously generated, extracting using a numerical lock-in program and a low-pass filter appropriate band-width WMS-
Abstract:
A camera concurrently produces an orthographic map and map spectral content. illumination from an image passes through a phase modulator and the resulting rotating photo-flux phase is converted to an electrical signal by multiple adjacent sensors of detectors of array of detectors. The amount of unwanted illumination reaching the sensors is reduced by a set of baffles that shield and protect the transducers from unwanted out-of-field light and other light sources.
Abstract:
A system and method for analyzing a sample is disclosed. At least a portion of the sample is illuminated with modulated light from a light source, such as an infrared light source. Infrared energy from the sample is monitored with an infrared detector as the sample is being illuminated with the modulated light. The AC response of the infrared energy is analyzed to determine at least one of emission data or reflection data about the sample. The emission data or the reflection data can be used to enhance chemical contrast between varying substances on the sample.
Abstract:
A spectral measurement device includes: an optical band-pass filter section that has first to n-th wavelengths (n is an integer of 2 or more) having a predetermined wavelength width as a spectral band thereof; a correction operation section that corrects a reception signal based on an output optical signal from the optical band-pass filter section; and a signal processing section that executes predetermined signal processing based on the reception signal corrected by the correction operation section that corrects the reception signal based on the change in the spectral distribution of the reception signal.
Abstract:
A method of determining a concentration of a gas in a sample and/or of the composition of a gas by means of a spectrometer includes measuring an absorption signal of the gas as a function of the wavelength. The wavelength substantially continuously runs through a wavelength range and is superimposed by a harmonic wavelength modulation, wherein the influence of the wavelength modulation on the absorption signal via the light source modulation properties and the detection properties of the spectrometer is dependent on the device properties of the respective spectrometer. The method includes converting the absorption signal into at least one first derivative signal; deriving a gas concentration measurement parameter from the first derivative signal; determining the concentration and/or composition of the gas from at least the gas concentration measurement parameter and from a calibration function compensating for influences of state variables of the gas and of the spectrometer properties.
Abstract:
If the specific gas concentration is relatively high, controller sets 0 as the modulation amplitude in a modulation amplitude controlling voltage generator for frequency modulation of laser light, controls a switching unit to select the output of a second ADC, and causes a computation unit to compute according to the direct absorption detection method to calculate the water molecule volume concentration. If the specific gas concentration is relatively low, the modulation amplitude is set to A, not 0, controls switching unit to select the output of a first ADC, which digitizes a synchronized detection signal, and causes the computation unit to compute according to the harmonic synchronous detection method to calculate the water molecule volume concentration. The concentration calculated using either of the methods is compared against a threshold value, and if decided that an accurate result cannot be obtained, the method is switched as the measurements are continuously executed.
Abstract:
A system and method for spectroscopic detection of loss in a resonator cavity is disclosed. The system can include a number of components. A tunable laser source can generate a laser beam. A frequency locking system can lock the frequency of the laser beam to a resonance of the resonator cavity or lock the length of the cavity to the frequency of the laser beam. The first modulation element can modulate the laser beam at a first modulation frequency to generate a modulated laser beam. The input coupler can direct the modulated laser beam into the resonator cavity. The first directing element can direct a first portion of light reflected from the input coupler to a first photodetector. The first demodulator can demodulate the first modulation signal to generate a first error signal which is a function of the loss in the resonator cavity.
Abstract:
An optical spectrum analyzer and a method of spectrally analyzing an optical signal. The optical spectrum analyzer includes a wave shaper such as an optical modulator that shapes an optical signal, a dispersive element such as a dispersive fiber in which the shaped optical signal is dispersed, a detector that provides an output signal indicative of the dispersed shaped optical signal, and a signal processor that analyzes the output signal, for example by calculating a transform such as an inverse Fourier transform or a Fourier transform of the output signal, to provide a frequency spectrum of the optical signal.
Abstract:
The invention relates to a spectrometer for material analysis and to a control method for a spectrometer. The spectrometer includes a radiant source (140) formed by multiple single radiation sources (141) having different central wavelengths, for generating a measuring signal, a measurement object (100) containing a material to be analyzed, at least one electrically tunable Fabry-Perot filter (120, 220) for the band pass filtering the measuring signal by at least two pass bands, and a detector (300, 400) for detecting said filtered measuring signals received from the measurement object (100). The spectrometer has: means (312) for modulating each of the single radiation sources (141) and correspondingly means (307, 309) for demodulating the detected signals such that the signal from each single radiation source can be distinguished from each other in the detector (300, 400); and means for detecting (300, 400) and demodulating (306, 307) multiple pass hands simultaneously.