Abstract:
Container structures for use in integrated circuits and methods of their manufacture without the use of mechanical planarization such as chemical-mechanical planarization (CMP), thus eliminating CMP-induced defects and variations. The methods utilize localized masking of holes for protection of the inside of the holes during non-mechanical removal of exposed surface layers. The localized masking is accomplished through differential exposure of a resist layer to electromagnetic or thermal energy. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
Abstract:
A method of curing a photosensitive material (10) having a critical electrical field amplitude at which photoinitiation occurs. The method includes contacting the photosensitive material, e.g., a photoinitiator/monomer resin system, with a substrate (18), such as an optical element, so as to form an interface (20) between the photosensitive material and the substrate. A light beam (12) is directed into the substrate such that the light beam is totally internally reflected from the interface within the substrate so that an evanescent wave is created in the photosensitive material. In order for curing to occur, the electric field amplitude of the evanescent wave at the interface must be at least equal to the critical electric field amplitude of the photosensitive material.
Abstract:
A method of fabricating a diffraction grating by utilizing a single substrate comprises the steps of forming a photosensitive material layer and a light transmission reducing film having a predetermined pattern integrally with each other on the substrate, exposing the photosensitive material layer by exposure irradiation light via the light transmission reducing film, and developing the photosensitive material layer after exposure. It is composed so that the direction of exposure and the direction of development are opposite to each other. It is possible to fabricate a diffraction grating in which each grating is formed on a predetermined substrate at a predetermined pitch and a root portion in a cross-section of each diffraction grating is constricted. In this way, it is possible to reduce or eliminate interfaces, so that the generation of noise light can be effectively suppressed and a diffraction grating having a high diffraction efficiency can be made.
Abstract:
A method for transferring a fine pattern (12) on a mask (11) onto a substrate (17) by a projection exposure apparatus including an illumination optical system (1-10) for irradiating an illuminating light on the mask (11), and a projection optical system (13) for projecting an image of the fine pattern (12) on the illuminated mask onto the substrate (17). The illuminating light is irradiated at least in the form of a pair of light beams opposedly inclined with respect to the mask through a pair of transparent windows (6a, 6b) of a spatial filter (6) whereby either one of the ±first-order diffracted beams and the 0-order diffracted beam produced from the fine pattern (12) of the mask (11) illuminated by each light beam are respectively passed apart by the equal distance from the optical axis of the projection optical system at or near to the Fourier transform plane within the projection optical system with respect to the fine pattern (12) of the mask (11), thereby forming on the substrate (17) a high-resolution projected image of a strong light-and-dark contrast with a high degree of focus depth.
Abstract:
A processing method for etching a substrate is described. This method includes subjecting a surface of a substrate to be processed to selective irradiation with a light in a gas atmosphere to form a surface-modified layer. The substrate surface with the surface-modified layer is then annealed to stabilize and make the surface-modified layer more etch resistant. Both the stabilized surface-modified layer and a non-modified portion of the substrate are then subjected to dry etching, thereby utilizing the higher resistance to dry etching of the stabilized surface-modified layer compared to the non-modified portion to selectively etch the non-modified portion to a desired depth.
Abstract:
A processing method is described which has a first step of depositing on a substrate a specimen film which may be any one of a semiconductor, a metal and a insulator.In a second step, the surface of the specimen film deposited in the first step, is irradiated with an ion beam to produce a physical damage on the surface, next, in a third step, the damaged specimen film surface is selectively irradiated with the light to partially cause a photochemical reaction so that a mask pattern, which depends on the desired device structure, is formed on the film surface. Finally, in a fourth step, photoetching is performed using the mask pattern formed in the third step as a shielding member.
Abstract:
A processing method comprises: a first step of depositing on a substrate which is a specimen a film of any one of a semiconductor, a metal and an insulator; a second step of subjecting the surface of the film deposited in the first step, to irradiation with a beam having a given energy to produce a physical damage on the surface; a third step of subjecting the film surface on which the physical damage is produced in the second step, to selective irradiation with light to partially cause a photochemical reaction so that a mask pattern depending on the desired device structure is formed on the film surface; and a fourth step of carrying out photoetching using as a shielding member the mask pattern formed in the third step.
Abstract:
A method of fabricating a printed circuit board includes the steps of forming a circuit pattern, applying solder resist, and exposing the solder resist. The circuit pattern including pads is formed on a substrate. The solder resist is applied on the substrate and the circuit pattern. The solder resist between the pads is exposed using a light source which emits scattered light and a mask film which is equipped with light transmission portions. The width of each light transmission portion is narrower than the distance between the pads. This method enables the formation of the solder resist in between fine pads in such a way that it does not cover an upper surface of the pad. The solder resist thus formed between the fine pads provides sufficient adhesion to the substrate.
Abstract:
An exposure method includes disposing a mask and a semiconductor wafer opposed to each other in a close proximity relation with respect to a Z-axis direction and printing a pattern of the mask on each of different shot areas of the semiconductor wafer in a step-and-repeat manner, with a predetermined exposure energy. In this method, the spacing between the mask and the wafer for the paralleling of them is made larger than the spacing therebetween as assumed at the time of mask-to-wafer alignment with respect to X-Y plane or the spacing between the mask and the wafer as assumed at the time of exposure of the wafer to the mask. After the paralleling of the mask and the wafer, the mask and the wafer are moved closer to each other in the Z-axis direction and alignment and exposure is performed. This ensures that the alignment and exposure are effected at an optimum spacing while, on the other hand, contact of the mask and the wafer at the time of paralleling is precluded.
Abstract:
A method and apparatus for exposing a substrate of relatively large surface area to radiation according to a predetermined pattern recorded on a mask, particularly useful in applying a painted border to an automobile windshield, includes the steps of progressively recording the predetermined pattern on a mask in the form of a continuous strip, and moving the radiation source to progressively scan the surface of the substrate with radiation, while at the same time moving the continuous strip mask relative to the radiation source, such that portions of the pattern on the continuous strip mask progressively become aligned with their corresponding portions of the substrate as the substrate is progressively scanned by the radiation source.