Abstract:
A process for singulating MOEMS optical devices (10) from a precursor structure (110), in which the precursor structure (110) comprises device material (12), having movable optical structures (14), and handle material (22), through which optical ports (30) are formed to provide for optical access to the movable optical structures (14). The process comprises coating a frontside and a backside of the precursor structure (110) with protection material (610). The precursor structure (110) is then attached to a substrate such as dicing tape and the precursor structure (110) separated into individual optical devices (10) by a process, including die sawing. Thereafter, the optical devices (10) are removed from the tape and the protection material (610) removed from the optical devices (10).
Abstract:
An alignment structure (100) maintains an optical fiber in a bore (113). The structure is fixed on a bench and is passively or actively aligned with a light source. Then the structure may be welded or soldered to the optical bench whereby the alignment may suffer due to heat transfer. To correct this, the alignment structure can be plastically deformed to correct the alignment after the components have been fixed. The alignment structure has a substantially constant cross section in a z-axis direction as well as flexible links in order to allow displacements orthogonal to the optical axis. This movement will be initiated by seizing the component with a micro-positioner at a handle (136) and displacing it over the elastic limit to achieve permanent deformation.
Abstract:
A semiconductor tunable laser system includes a tunable Fabry-Perot cavity and a cavity length modulator, which controls an optical length of the cavity at least over a distance corresponding to the spacings between the longitudinal modes of the laser cavity. Thus, the tunable Fabry-Perot cavity allows the laser cavity to have gain at the desired wavelength of operation while the cavity length modulator tunes the cavity length such that a longitudinal cavity mode exists at the desired wavelength of operation. Also, in one embodiment, a wavelength locker system is further provided that has a differential wavelength filter, e.g., stepped etalon, and a multi-element detector, e.g., a quad-detector. The controller then modulates the Fabry-Perot cavity to control the wavelength in response to the signal received from the multi-element detector.
Abstract:
An optical component manipulation system (100) has two opposed jaws (120A, 120B), which can each be independently positioned relative to each other in a coordinate plane to thereby effect the desired positioning of optical components (10) within the larger system. Z-axis rigidity is provided by air-bearings (124A, 124B). Laser heating (220) of the jaws is used for solder, or similar heat driven bonding, processes.
Abstract:
A process for fabricating an optical membrane device comprises providing a handle wafer and then oxidizing a surface of the handle wafer to form an insulating layer. A device wafer is then bonded to the handle wafer. An optical membrane structure is formed in this device wafer. The insulating layer is selectively removed to release the membrane structure. This device wafer can be manufactured from silicon wafer material. Such material typically has a low number of dislocations yielding a stable mechanical membrane structure. The insulating layer defines the electrical cavity across which electrical fields are established that are used to electrostatically deflect the membrane structure. The insulating layer is between 3 and 6 micrometers ( mu m) in thickness.
Abstract:
A tunable Fabry-Perot filter includes an optical cavity bounded by a stationary reflector and a deformable or movable membrane reflector. A second electrostatic cavity outside of the optical cavity includes a pair of electrodes, one of which is mechanically coupled to the movable membrane reflector. Voltage applied to the electrodes across the electrostatic cavity causes deflection of the membrane, thereby changing the length of the optical cavity and tuning the filter. The filter with the movable membrane can be formed by micro device photolithographic and fabrication processes from a semiconductor material in an integrated device structure. The membrane can include an inner movable membrane portion connected within an outer body portion by a pattern of tethers. The pattern can be such that straight or radial tethers connect the inner membrane with the outer body. Alternatively, a tether pattern with tethers arranged in a substantially spiral pattern can be used.
Abstract:
An alignment structure (100) maintains an optical fiber in a bore (113). The structure is fixed on a bench and is passively or actively aligned with a light source. Then the structure may be welded or soldered to the optical bench whereby the alignment may suffer due to heat transfer. To correct this, the alignment structure can be plastically deformed to correct the alignment after the components have been fixed. The alignment structure has a substantially constant cross section in a z-axis direction as well as flexible links in order to allow displacements orthogonal to the optical axis. This movement will be initiated by seizing the component with a micro-positioner at a handle (136) and displacing it over the elastic limit to achieve permanent deformation.
Abstract:
An optical detector system comprises a hermetic optoelectronic package, an optical bench installed within the optoelectronic package, a balanced detector system installed on the optical bench. The balanced detector system includes at least two optical detectors that receive interference signals. An electronic amplifier system installed within the optoelectronic package amplifies an output of at least two optical detectors. Also disclosed is an integrated optical coherence tomography system. Embodiments are provided in which the amplifiers, typically transimpedance amplifiers, are closely integrated with the optical detectors that detect the interference signals from the interferometer. Further embodiments are provided in which the interferometer but also preferably its detectors are integrated together on a common optical bench. Systems that have little or no optical fiber can thus be implemented.
Abstract:
A process for tunable filter train alignment comprises detecting a spectral response of the filter train and aligning an optical fiber (10) that transmits an input optical signal to the filter train during operation. Further, the tunable filter (18) is moved relative to the filter train in response to a spectral response of the filter train. As a result, the alignment and spectral response of the tunable filter train are optimized. In the preferred embodiment, the alignment and SMSR optimization occur simultaneously with respect to each other.
Abstract:
A micro-optical component comprises an optical element (52) for interacting with an optical beam and a mounting structure (50) for attaching the optical element (52) to an optical bench (10). This optical element (52) is solid phase welded to the mounting structure (50). Solid phase welding has advantages in that it can be performed at lower temperatures than most soldering, even some eutectic soldering. Solid-phase welding, however, is much more robust during subsequent temperature cycling. This is especially important when the optical components undergo subsequent high temperature cycling.