Abstract:
This invention provides chelating moieties that comprise an aryl group. Monomers that include the chelating moieties can be polymerized into chelating polymers. Chelating polymers are useful to chelate metals. Chelating polymers in the form of metal chelates are useful for binding analytes, such as polypeptides that comprise histidine residues. Chelating polymers can be includes in articles such as chips and chromatographic materials.
Abstract:
A mass spectrometer probe is formed of a nonconductive polymer that is doped with conductive material. The probe may be used as, or as part of, a repeller plate in a parallel laser ion desorption/ionization time-of-flight mass spectrometer. Transparent locations on the probe enable a sample placed thereon to be visualized before or during mass spectrometry. The conductive nature of the probe maintains the consistency of the electromagnetic field applied to the sample. The probe also displays low outgassing and high mechanical and chemical stability, thereby enabling it to be used repetitively.
Abstract:
A mass spectrometer probe is formed of a nonconductive polymer that is doped with conductive material. The probe may be used as, or as part of, a repeller plate in a parallel laser ion desorption/ionization time-of-flight mass spectrometer. Transparent locations on the probe enable a sample placed thereon to be visualized before or during mass spectrometry. The conductive nature of the probe maintains the consistency of the electromagnetic field applied to the sample. The probe also displays low outgassing and high mechanical and chemical stability, thereby enabling it to be used repetitively.
Abstract:
The present invention contemplates various devices that are configured to separate a sample, which contains more than one unique species, into any desired number of sub-samples by passing the sample across a like number of separation media configured for a first separation protocol. Each of the sub-samples may be further separated by an additional separation protocol, thereby creating a plurality of mini-samples, each of which may be further separated and/or analyzed. The invention also contemplates using a simple method of using conduits to form a fluid path that passes through a plurality of separation media, each of which media is configured to isolate a particular sub-sample. After various sub-samples of the sample are isolated by the various separation media, the conduits may be removed, thereby enabling each of the isolated sub-samples to be further separated and/or analyzed independent of any other sub-sample.
Abstract:
The present invention relates to the fields of molecular biology, combinatorial chemistry and biochemistry. Particularly, the present invention describes methods and kits for dynamically reducing the variance between analyte taken from complex mixtures.
Abstract:
A hydrogel layer is applied to a substrate advantageously when the layer is formed in situ, using a polymeric or copolymeric precursor that includes, respectively, monomer subunits that have a photocrosslinkable functionality and monomer subunits that have a chemically selective functionality for binding a biomolecular analyte, such as a protein. A hydrogel-coated substrate thus obtained is particularly useful as a probe for mass spectroscopic analysis, including SELDI analysis. Hydrogel particles also can be used for SELDI analysis.
Abstract:
The present invention provides a substrate having a polymerized, polysaccharide-based hydrogel attached to the surface. The hydrogel can be derivatized with binding functionalities that bind analytes from a sample. The invention further provides methods of using the device and gels that are capable of selectively binding one or more analytes from a sample.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, hydrophilic, non-toxic and substantially spherical microspheres associated with stem cells useful for tissue construction and generation. The invention also relates to methods of tissue construction and generation, for the treatment of various tissue damage and defects, using the injectable compositions.
Abstract:
L'invention concerne un procédé d'immobilisation de ligands nucléiques comprenant au moins une fonction amine réactive, par greffage sur un support solide activé, comprenant une étape de couplage desdits acides nucléiques sur ledit support solide activé à un pH inférieur à 6.
Abstract:
The present invention provides methods and kits for purifying a target protein group. The method comprises the steps of contacting a sample comprising at least 95% of the target protein group and at most 5% of contaminating proteins with a library of binding moieties having different binding moieties, binding the contaminating proteins and a minority of the target protein group to the library of binding moieties, separating the unbound target protein group from the proteins bound to the library of binding moieties and collecting the unbound target protein. The collected target protein is more pure than the target protein group in the sample.