Abstract:
The present invention is a pipette-filtration assembly having a main body defining a first channel, a second channel, a first valve, and a second valve. The first valve is associated with the first channel and permits flow in a first direction while substantially hindering flow in a second direction. The second valve is associated with the second channel and permits flow in the second direction while substantially hindering flow in the first direction. At least one filter is used to filter a fluid sample as the fluid sample flows in the first direction and/or the second direction. The pipette-filtration assembly is preferably disposable and includes one or two stages of integral filtration, primarily for use with an air-displacement pipetting or transfer system.
Abstract:
A method for detecting and counting particles suspended in fluids, such as bacteria suspended in urine, utilizing dynamic features of the suspended particles and employing light scattering measurements. The disclosed method is suitable for determining the susceptibility of bacteria to antibiotics. A cuvette for detecting bacteria in fluids, which is especially suited for the light scattering measurements, is provided.
Abstract:
The present invention is a pipette-filtration assembly having a main body defining a first channel, a second channel, a first valve, and a second valve. The first valve is associated with the first channel and permits flow in a first direction while substantially hindering flow in a second direction. The second valve is associated with the second channel and permits flow in the second direction while substantially hindering flow in the first direction. At least one filter is used to filter a fluid sample as the fluid sample flows in the first direction and/or the second direction. The pipette-filtration assembly is preferably disposable and includes one or two stages of integral filtration, primarily for use with an air-displacement pipetting or transfer system.
Abstract:
The present invention is a cuvette assembly for use in optically measuring at least one characteristic of particles within a plurality of liquid samples. The cuvette assembly comprises a main body having internal walls and external walls, and a plurality of cuvettes within the main body at least partially being defined by the internal walls. Each of the plurality of cuvettes has a liquid-input chamber for receiving a respective one of the plurality of liquid samples, a filter, and an optical chamber for receiving a respective filtered liquid sample caused by passing the respective one of the plurality of liquid samples through the filter. Each of the optical chambers includes an entry window for allowing transmission of an input light beam through the filtered liquid sample and an exit window for transmitting a forward scatter signal caused by the particles within the filtered liquid sample.
Abstract:
The present invention is a pipette-filtration assembly having a main body defining a first channel, a second channel, a first valve, and a second valve. The first valve is associated with the first channel and permits flow in a first direction while substantially hindering flow in a second direction. The second valve is associated with the second channel and permits flow in the second direction while substantially hindering flow in the first direction. At least one filter is used to filter a fluid sample as the fluid sample flows in the first direction and/or the second direction. The pipette-filtration assembly is preferably disposable and includes one or two stages of integral filtration, primarily for use with an air-displacement pipetting or transfer system.
Abstract:
A method for detecting and counting particles suspended in fluids, such as bacteria suspended in urine, utilizing dynamic features of the suspended particles and employing light scattering measurements. The disclosed method is suitable for determining the susceptibility of bacteria to antibiotics. A cuvette for detecting bacteria in fluids, which is especially suited for the light scattering measurements, is provided.
Abstract:
A method for detecting and counting particles suspended in fluids, such as bacteria suspended in urine, utilizing dynamic features of the suspended particles and employing light scattering measurements. The disclosed method is suitable for determining the susceptibility of bacteria to antibiotics. A cuvette for detecting bacteria in fluids, which is especially suited for the light scattering measurements, is provided.
Abstract:
An optical measurement instrument is an integrated instrument that includes an optical cavity with a light source, a sample cuvette, and an optical sensor. The instrument can be used for taking measurements of organism concentration in one or more samples. Preferably, the instrument holds multiple, individually-loaded, independent fluid samples and determines bacteria concentration via a forward-scattering signal. The instrument can incorporate onboard incubation to promote bacterial growth in the samples such that, once a certain bacterial concentration is achieved, the higher concentration sample can be used with a mass spectrometer to identify the type of bacteria. The instrument and mass spectrometer can be a part of a network for medical diagnostic testing data where data is stored in a manner that is inherently untainted by patient identifiable information.
Abstract:
The present invention is an optical measurement system for measuring a liquid sample within a well. The system comprises a light source configured to transmit light though the well, a detector configured to measure optical signals derived from the transmitted light, and a tunable optical element. The tunable optical element is positioned between the light source and the well. The tunable optical element is operable to shape the light to compensate for distortions induced by a surface of the liquid sample. The detector is preferably located below the well for receiving a forward scatter signal indicative of at least one characteristic of the particles within the liquid sample.