Abstract:
Powering the internal circuitry, that is the controller of the power switch of a step-down DC-DC converter for a broad range of values of output voltage and achieving an enhanced energy saving in a low load conditions of operation is made possible by a method and implementing circuit based on defining two distinct thresholds of discrimination of the output voltage, both tied to a reference voltage, for generating two respective control signals and defining, from logical combinations of said two control signals, three distinct regions of operation of the converter upon the varying of electrical parameters, respectively identified by logical combinations of a pair of enabling signals.
Abstract:
A control circuit for a switching voltage regulator is configured to receive an error signal representative of a regulator output voltage in relation to a nominal output voltage, and includes a set/reset flip-flop, a hysteresis comparator and a logic circuit. The flip-flop is configured to produce a switching control signal according to logic values at its set and reset terminals. The comparator is configured to produce a set signal at the set terminal when an error signal drops below a first value, and a reset signal when the error signal rises above a second value. The logic circuit is configured to prevent transmission of the reset signal to the reset terminal during a selected minimum time period and to thereafter enable transmission of the reset signal, and further, to produce an alternate reset signal at the reset terminal at the end of the selected maximum time period.
Abstract:
A control device controls a rectifier of a switching converter that is supplied with an input voltage and provides an output current. The rectifier is configured to rectify the output current of the converter and has at least one transistor. The control device, when the at least one transistor is turned off, provides a slow discharge path to ground in a normal operation condition and provides a fast discharge path to ground for discharging the control terminal of the at least one transistor in response to detecting a zero cross event of the current flowing through said at least one transistor.
Abstract:
A control device for a transistor of a switching converter rectifier generates a control signal of the transistor and includes a circuit to measure the conduction time of the body diode of the transistor cycle by cycle. When the conduction time is greater than a first threshold, the off time instant of the transistor is delayed by a first quantity in the next cycles, until the conduction time is less than the first threshold and greater than a second threshold. When the conduction time is between the first and second thresholds, the off time instant is delayed by a fixed second quantity in the next cycles until the conduction time is lower than the second threshold, with the second quantity less than the first quantity. When the conduction time is lower than the second threshold, the off time instant is advanced by the second quantity in the next cycle.
Abstract:
A transition mode power factor correction converter comprising a boost inductor, a switch, a diode, and output tank capacitor, has circuit means of limitation of the off-time interval of the switch to a fraction of the off-time interval, “complementary” to the on-time interval that is normally controlled for regulating the output voltage, during part of a cycle of a rectified sinusoidal voltage waveform input to the converter, when the current flowing in the inductor reaches a maximum threshold, causing the mode of operation of the device to switch from transition mode to continuous current mode for a middle phase angle region of a rectified sinusoidal input voltage waveform, under high load conditions, defined by said maximum current threshold. Current peaks amplitude and ripple are effectively reduced for same output power.
Abstract:
A control device controls a switching converter. The converter has an input alternating supply voltage, a regulated direct voltage on the output terminal, and a switch connected to an inductor. The control device controls the closing and opening time period of said switch for each cycle and receives a first input signal representative of the current flowing through one element of the converter. The control device comprises a counter configured to count a time period, a comparator configured to compare said first input signal with a second signal, digital control block configured to control the closing and opening of said switch and to activate said counter to start the counting of said time period when the said first input signal crosses said second signal, with said switch being closed. The digital control block is configured to open the switch when the counter finishes the counting of said time period.
Abstract:
A method of estimating the logarithmic likelihood ratio for two streams of samples of a received S-FSK modulated signal, comprises the step of estimating channel and noise parameters and the current signal-to-noise ratios, comparing these signal-to-noise ratios with the values of a discrete ordered set of values and identifying the respective pairs of consecutive values of the ordered set between which the current signal-to-noise ratios are comprised. The log-likelihood ratios are estimated using respective polynomial approximating functions defined on the current signal-to-noise ratio and on the coefficients stored in a look-up table corresponding to the pairs of consecutive values, in which these coefficients are related to the values of the natural logarithm of the modified Bessel function of the first kind of order zero in correspondence of values belonging to the discrete ordered set.
Abstract:
The present invention refers to a method for scanning sequence selection for displays. In one embodiment of the method for scanning sequence selection for displays having a plurality of rows and columns, said plurality of rows and columns cross each other defining a plurality of optical elements having a first optical state and a second optical state in response to a first electric state and to a second electric state. The method comprises the phases of driving said plurality of row of said display according to a prefixed scanning ordering. The method is characterized in that said prefixed scanning ordering is predisposed by ordering every column of said plurality of column so that the total switching number between said first electric state and said second electric state is minimized.