Abstract:
Magnetoelectric memory element structures and methods for making such structures using a barrier layer as a material removal stop layer are provided. The methods comprise forming a digit line (26) disposed at least partially within a dielectric layer (24). The dielectic material layer overlies an interconnect stack. A conductive barrier layer (40, 42) having a first portion (40) and a second portion (42) id deposited. The first portion overlies the digit line and the second portion is disposed within the void space and in electrical communication with the interconnect stack. A memory element layer (46) is formed overlying the first portion and an electrode layer (48) is deposited overlying the memory element layer. The electrode layer and the memory element layer are then patterned and etched.
Abstract:
Techniques of sensing a temperature of a heat source disposed in a substrate of an integrated circuit (600) are provided. According to one exemplary method, a Magnetic Tunnel Junction ("MTJ") temperature sensor (608) is provided over the heat source (604). The MTJ temperature sensor comprises an MTJ core configured to output a current during operation thereof. The value of the current varies based on a resistance value of the particular MTJ core. The resistance value of the MTJ core varies as a function of the temperature of the heat source. A value of the current of the MTJ core can then be associated with a corresponding temperature of the heat source.
Abstract:
An integrated circuit device (300) comprises a substrate (301) and MRAM architecture (314) formed on the substrate (308). The MRAM architecture (314) includes a MRAM circuit (318) formed on the substrate (301); and a MRAM cell (316) coupled to and formed above the MRAM circuit (318). Additionally a passive device (320) is formed in conjunction with the MRAM cell (316). The passive device (320) can be one or more resistors and one or more capacitor. The concurrent fabrication of the MRAM architecture (314) and the passive device (320) facilitates an efficient and cost effective use of the physical space available over active circuit blocks of the substrate (404, 504), resulting in three-dimensional integration.
Abstract:
A method for contacting an electrically conductive layer overlying a magnetoelectronics element includes forming a memory element layer overlying a dielectric region. A first electrically conductive layer (26) is deposited overlying the memory element layer (18). A first dielectric layer (28) is deposited overlying the first electrically conductive layer (26) and is patterned and etched to form a first masking layer (28). Using the first masking layer (28), the first electrically conductive layer (26) is etched. A second dielectric layer (36) is deposited overlying the first masking layer (28) and the dielectric region. A portion of the second dielectric layer (36) is removed to expose the first masking layer (28). The second dielectric layer (36) and the first masking layer (28) are subjected to an etching chemistry such that the first masking layer (28) is etched at a faster rate than the second dielectric layer (36). The etching exposes the first electrically conductive layer (26).