Abstract:
In a portable multimedia device, a method, apparatus, and system for automatically updating programmable buttons on a remote client device using a set of user preferences is described. A remote client device is coupled (either wired or wirelessly) to the host computer and the preference file is passed to the remote client device which uses the preference file to automatically update any programmable buttons included therein to execute the desired suite of functions. In some cases, a combination of buttons can be used to perform a particular function whereas in other cases, a single button can be associated with a particular function.
Abstract:
A graphical user interface ("GUI") can be presented on a remote control accessory device that has user input and display devices. The GUI can be defined and managed by a portable media device that is controlled using the GUI. The portable media device can provide the accessory with a GUI image to be displayed. The accessory can send information to the portable media device indicative of a user operation of an input device in response to the displayed image. The portable media device can process this input to identify the action requested by the user and take the appropriate action, which can include updating the GUI image provided to the accessory.
Abstract:
Methods and apparatus for allocating resources (such as communications bandwidth) using a network access device. In one embodiment, the network comprises a wireless (e.g., WiFi) network, and the access device comprises a wireless router or gateway in communication with a plurality of wireless users. The device comprises an administrator function which allows the network administrator to implement one or more resource allocation policies or rules. Using this approach, resources such as bandwidth can be allocated based on any number of different parameters or use classifications, including for example: (i) public versus private use; (ii) security level; (iii) user range from the access device; (iv) type of PHY or air interface; (v) type of channel coding; (vi) air interface mode or application (e.g., data versus voice). In one variant, the allocation policies are manually controlled by the administrator. In another variant, substantially automatic resource allocation is performed by the administrator program.
Abstract:
Methods and systems that facilitate data delivery to electronic devices are disclosed. One aspect pertains to data delivery to electronic devices that are portable, such as, mobile devices. In one embodiment, one mobile device discovers another mobile device within its vicinity. The mobile devices can then wirelessly transmit data from one mobile device to the other. The mobile devices, or their users, can control, request or influence the particular data content being delivered.
Abstract:
Improved techniques to control utilization of accessory devices with electronic devices are disclosed. The improved techniques can use cryptographic approaches to authenticate electronic devices, namely, electronic devices that interconnect and communicate with one another. One aspect pertains to techniques for authenticating an electronic device, such as an accessory device. Another aspect pertains to provisioning software features (e.g., functions) by or for an electronic device (e.g., a host device). Different electronic devices can, for example, be provisioned differently depending on different degrees or levels of authentication, or depending on manufacturer or product basis. Still another aspect pertains to using an accessory (or adapter) to convert a peripheral device (e.g., USB device) into a host device (e.g., USB host). The improved techniques are particularly well suited for electronic devices, such as media devices, that can receive accessory devices. One example of a media device is a media player, such as a hand-held media player (e.g., music player), that can present (e.g., play) media items (or media assets).
Abstract:
A communication system for sending data between a multimedia player and a nearby receiver is described. In the described embodiment, the multimedia player includes a multimedia data file processor unit arranged to process a multimedia data file and a data transmission unit coupled to the multimedia data file processor unit arranged to concurrently transmit selected portions of the processed multimedia data file. The system also includes a nearby receiver unit capable of receiving the transmitted selected portions of the processed multimedia data file.
Abstract:
A media player system is disclosed. One aspect of the media player system pertains to a docking station (178) that allows a media player (174) to communicate with other media devices. Another aspect of the media player system pertains to a wireless media player system that includes a hand held media player capable of transmitting information over a wireless connection and one or more media devices (404A) capable of receiving information over the wireless connection (406). Another aspect of the media player system pertains to a method of wirelessly connecting the hand held media player to another device. The method includes selecting a media item on the hand held media player; selecting one or more remote recipients on the hand held media player; and transmitting the media item locally to the hand held media player, and wirelessly to the selected remote recipients. Another aspect of the media player system pertains to a hand held music player that includes a transmitter for transmitting information over a wireless connection. The transmitter is configured to at least transmit a continuous music feed to one or more personal tuning devices that each include a receiver capable of receiving information from the transmitter over the wireless connection.
Abstract:
Provided according to one embodiment is a thermostat having a housing including a forward-facing surface comprising a passive infrared (PIR) motion sensor disposed inside the housing for sensing occupancy in the vicinity of the thermostat. The PIR motion sensor has a radiation receiving surface that detects the lateral movement of an occupant in front of the forward-facing surface. A grille member having one or more openings is also included along the forward-facing surface and placed over the radiation receiving surface of the PIR motion sensor. The grille member is dimensioned to visually conceal and protect the PIR motion sensor disposed inside the housing promoting a visually pleasing quality of the thermostat, while also permitting the PIR motion sensor to effectively detect the lateral movement of the occupant. In one embodiment, the grille member openings are slit-like openings oriented along a substantially horizontal direction.
Abstract:
Provided according to one embodiment is a thermostat having a housing including a forward-facing surface comprising a passive infrared (PIR) motion sensor disposed inside the housing for sensing occupancy in the vicinity of the thermostat. The PIR motion sensor has a radiation receiving surface that detects the lateral movement of an occupant in front of the forward-facing surface. A grille member having one or more openings is also included along the forward-facing surface and placed over the radiation receiving surface of the PIR motion sensor. The grille member is dimensioned to visually conceal and protect the PIR motion sensor disposed inside the housing promoting a visually pleasing quality of the thermostat, while also permitting the PIR motion sensor to effectively detect the lateral movement of the occupant. In one embodiment, the grille member openings are slit-like openings oriented along a substantially horizontal direction.
Abstract:
Methods and apparatus, including computer program products, implementing and using techniques for projecting a source image in a head-mounted display apparatus for a user. A first display projects an image viewable by a first eye of the user. A first peripheral light element is positioned to emit light of one or more colors in close proximity to the periphery of the first display. A receives data representing a source image, processes the data representing the source image to generate a first image for the first display and to generate a first set of peripheral conditioning signals for the first peripheral light element, directs the first image to the first display, and directs the first set of peripheral conditioning signals to the first peripheral light element. As a result, an enhanced viewing experience is created for the user.