Abstract:
The invention relates to a cross-linked, water-swellable polymer that contains polymerized into it moieties of a) water-soluble, monoethylenically unsaturated monomers, and b) 0.001 to 5 mole % based on the monomers a) of a cross-linking combination, b1) a first cross-linking agent with at least two (meth)acrylic ester moieties in the molecule and b2) a second cross-linking agent with at least two (meth)allyloxy moieties in the molecule, the molar ratio of b1) to b2) ranging from 0.7:1 to 10:1. The polymer according to the invention has a balanced property profile as regards absorptivity, gel strength, absorption speed and extractable components and can be advantageously produced by a continuous method.
Abstract:
A process for preparing water-absorbing polymer beads with high permeability by polymerizing droplets of a monomer solution, comprising monomers bearing acid groups, in a gas phase surrounding the droplets, wherein the monomer solution comprises polyvalent cations and the polymer beads have a mean diameter of at least 150 μm.
Abstract:
Bead polymers are prepared by reverse suspension polymerization by a process in which an aqueous solution of water-soluble ethylenically unsaturated monomers are polymerized in an aliphatic hydrocarbon using an inorganic suspending agent based on a modified finely divided mineral and, in addition, from 0.1 to 5% by weight, based on the monomers used, of a nonionic surfactant, in the presence of a polymerization initiator, with the formation of a water-in-oil polymer suspension.
Abstract:
O.Z. 0050/41002 s: A process is described for the preparation of finely divided polymer powders by polymerizing water-soluble monomers in the aqueous phase of a water-in-oil emulsion in the presence of water-in-oil emulsifiers and polymerization initiators, removing the water from the resultant water-in-oil polymer suspension by azeotropic distillation, and isolating the suspended, finely divided polymer powder, either the polymerization of the water-soluble monomers being carried out in the presence of from 0.1 to 10% by weight, based on the monomers employed in the polymerization, of protective colloids, or the protective colloids being added to the water-in-oil polymer suspension after the polymerization is complete. The polymerization is preferably carried out in the presence of surfactant. The finely divided pulverulent polymers are used as flocculants or thickeners for aqueous systems.