Abstract:
A method and apparatus of resource management for multimedia broadcast multicast services (MBMS) are disclosed. A wireless transmit/receive unit (WTRU) sends a measurement report and an MBMS reception performance report to a network. Single frequency network (SFN) area change may be made based on cell reselection information, WTRU macro-diversity MBMS reception performance, neighbor cell signal strength reported by a WTRU, interference level measured by the WTRU, a number of WTRUs in a cell, service priority, WTRU class, WTRU mobility trend, WTRU location to a cell center, WTRU MBMS reception interference level, etc. The MBMS service on/off decision and/or point-to-point (PTP) to point-to-multipoint (PTM) switching may be made based on a channel condition of a WTRU. The channel condition may be determined based on whether the WTRU is in in-sync or out-of-sync in MBMS reception, consecutive negative acknowledgements (NAKs) within a certain time window, measured pathloss from a reference channel, etc.
Abstract:
Paging in a HSDPA connected mode CELL_PCH or URA-PCH state. A WTRU is configured to select various PICH information that is broadcast by a base station (in the HSDPA associated PICH info" information element of a System Information block 5/5bis) by compiling a list of cabdidate PICHs, and selecting a PICH info based on the U-RNTI of the WTRU. The WTRU is configured to receive paging messages, based on the selected PICH information. In one embodiment, a preferred WTRU is configured to receive paging messages, based on a PICH, a HS-SCCH, and a HS-PDSCH. In another embodiment, a preferred WTRU is configured to receive paging messages, based on a PICH and a HS-PDSCH. In both embodiments, a time delay parameter (for timing the transmission of the PICH and the transmission of a paging message) is preferably used so that the WTRU may listen for either the HS-SCCH or HS-PDSCH for a period of time and return to a sleep mode if no paging message is received.
Abstract:
A wireless transmit receive unit (WTRU) is configured to operate in an high speed data packet access (HSDPA) mode in a cell and/or state and to clear HSDPA resources when moving out of the cell and/or state. The WTRU is configured to clear HSDPA resources when conditions to perform high speed downlink shared channel reception are not met. When in cell transition or state transition, the WTRU checks whether there is an ongoing a high speed downlink scheduling channel (HS-DSCH) reception, and if the new cell or state cannot support HS-DSCH, then the HSDPA resources being used for the ongoing HS-DSCH reception are released. The WTRU uses radio resource control (RRC) processing, and monitors various events and conditions such as an RRC variable HS_DSCH_RECEPTION_GENERAL, which tracks HS-DSCH reception for all states in order to make the determination whether to release HSDPA resources.
Abstract:
A method for assigning a tracking area (TA) is disclosed. A mobility state of a wireless transmit/receive unit (WTRU) is determined and the TA is assigned based on the determined mobility state. Also disclosed is a method for accessing a closed subscriber group (CSG) TA. A CSG TA identifier is received at a WTRU and is stored. A CSG TA broadcast is received and the broadcast CSG TA is accessed if an identifier of the broadcast CSG TA matches the stored CSG TA identifier. Also disclosed is a method for changing a mobility state of- a WTRU. A current mobility state of the WTRU is determined and a predetermined metric of the WTRU is examined. The predetermined metric is evaluated to determine if the metric has crossed a threshold and the mobility state is changed based on the evaluated metric.
Abstract:
A method and apparatus generates a codebook and associated scheduling and control signaling. A plurality of channel combinations is generated for a plurality of wireless transmit receive units (WTRUs). The channel for each WTRU is quantized based on the WTRU codebook. A codebook for beamforming is generated for a plurality of WTRUs. The codebook includes a plurality of beamforming matrices. All possible beamforming matrices may be computed and the codebook may be quantized.
Abstract:
A method for assigning a tracking area (TA) is disclosed. A mobility state of a wireless transmit /receive unit (WTRU) is determined and the TA is assigned based on the determined mobility state. Also disclosed is a method for accessing a closed subscriber group (CSG) cell. A CSG TA identifier is received at a WTRU and is stored. A CSG TA broadcast is received and the broadcast CSG TA is accessed if an identifier of the broadcast CSG TA matches the stored CSG TA identifier. Also disclosed is a method for changing a mobility state of a WTRU. A current mobility state of the WTRU is determined and a predetermined metric of the WTRU is examined. The predetermined metric is evaluated to determine if the metric has crossed a threshold and the mobility state is changed based on the evaluated metric. A method for updating TA upon expiration of timer (set up based on mobility state. Paging load).
Abstract:
A method and apparatus for performing a handover are disclosed. An Internet protocol (IP) multimedia subsystem (IMS) client registers with an IMS network and establishes an MIH session with an MIH application server using an SIP. The IMS client establishes a session for IP-based service, (e.g., VoIP), with a communication peer using SIP messaging. MIH messages are exchanged for handover with the MIH application server over IP using SIP messages by encapsulating the MIH messages in SIP instant messages. Alternatively, the MIH messages may be exchanged with the MIH application over IP by sending equivalent SIP messages in place of the MIH messages.
Abstract:
A variety of wireless communication methods and apparatus for supporting reconfiguration of radio link control (RLC) parameters are disclosed. A radio resource control (RRC) reconfiguration message is generated that indicates that an RLC unit in a wireless transmit/receive unit (WTRU) or a universal terrestrial radio access network (UTRAN) should be reconfigured from supporting flexible size RLC protocol data units (PDUs) to supporting fixed size RLC PDUs. If an information element (IE) "one sided RLC re-establishment" is present in the RRC reconfiguration message, only a receiving side subassembly in the RLC unit is re-established. Otherwise, both the receiving side subassembly and a transmitting side subassembly in the RLC unit are re-established. Flexible size RLC PDUs may be discarded and a message indicating the discarded flexible size RLC PDUs may be transmitted. The flexible size RLC PDUs may be modified such that they correspond to a set of pre-defined sizes.
Abstract:
A method and apparatus for transport format combination restriction in a high speed downlink packet access (HSDPA) system. An enhanced transport format combination (E-TFC) table is split into sub-tables. A wireless transmit/receive unit (WTRU) selects one of the sub-tables and a window within the selected sub-table to search. The WTRU then determines whether or not a first element in the search window is blocked. If the first element in the search window is blocked, then the WTRU assumes that all of the elements in the selected sub-table are blocked. If the first element in the search window is not blocked, the WTRU then determines whether a last element in the search window is blocked. If the last element is not blocked, the WTRU assumes that all elements smaller than or equal to the last element are not blocked, and all elements greater than the last element are blocked. If the last element is blocked, the size of the search window is reduced until it is determined that the last element is not blocked.
Abstract:
The transmission and decoding of resource blocks (RBs) transmitted via a multiple-input multiple-output (MIMO) antenna having a plurality of transmit antennas is disclosed. Each RB includes a plurality of resource elements (REs). Each RE is reserved for one of a common reference signal (CRS) associated with one of the transmit antennas, a dedicated reference signal (DRS) including a single beamformed or precoded pilot, a DRS including a composite beamformed or precoded pilot, and a data symbol. Each RB may include a "control type" data symbol that indicates a DRS mode associated with the RB. In one DRS mode, each DRS includes a single beamformed or precoded pilot. In another DRS mode, each DRS includes a composite beamformed or precoded pilot. In yet another DRS mode, single beamformed or precoded pilots, and composite beamformed or precoded pilots, may coexist and be transmitted simultaneously within the same RBs or in different RBs.