Abstract:
A process for producing a galvanneal layer on a steel substrate, including forming a Zn-Fe coating having a predetermined Fe content F (wt.%) on the steel substrate; and heat treating the Zn-Fe coating on the substrate from a predetermined starting temperature T1 (°C) to a predetermined ending temperature T2 (°C) at a predetermined heating rate R (°C/min.), wherein F, T1, T2, and R are selected so that the following condition is met, a.R?2 + b.T2¿ + c.R.F + d.R.T + e.R + f.T = g, where a, b, c, d, e, f and g are predetermined constants, thereby to form a virtually 100 % δ¿1? phase galvanneal structure. Alternatively, the heat treatment can be performed until the specimen temperature is just below a minimum temperature of the δ1 phase stability range at a selected Fe content and heating rate, followed by an isothermal hold for a predetermined time period until transformation to the δ1 phase occurs.
Abstract:
Provided are thermally-responsive reversible adhesive materials. The materials can comprise a polymer composition, comprising: a polymeric hydrogel; and a thermoresponsive polymer, the polymeric hydrogel and the thermoresponsive polymer being arranged as an interpenetrating network, the thermoresponsive polymer being soluble in water, the thermoresponsive polymer having a lower critical solution temperature (LCST), and the thermoresponsive polymer chains being dispersed within the polymeric hydrogel such that when the thermoresponsive polymer attains a temperature above the LCST, the thermoresponsive polymer becomes insoluble and forms physical crosslinks between chains of the polymeric hydrogel.
Abstract:
High pressure spatial chemical vapor deposition apparatuses and related process are disclosed for forming thin films on a substrate. An enclosure includes plural process chambers fluidly isolated from each other by radial separating barriers. Each chamber contains a different source gas comprising one or more volatile reactive species. The substrate is supported beneath the chambers on a rotating heated susceptor. Rotation of the susceptor carries the substrate in a path which consecutively exposes the substrate to the volatile reactive species in each process chamber. The gases first mix in the gaseous boundary layer formed adjacent the substrate. A thin film gradually grows in thickness on the substrate with each successive pass and exposure to the volatile reactive species in each of the individual process chambers. The film may be grown at high pressures exceeding 1 atmosphere in some implementations. A modular design includes an outer shell and different interchangeable process inserts.
Abstract:
Disclosed herein are compound capable of exploiting non-bonding electron densities, for example, cationic open-shell, pi-conjugated bisphenalenyls wherein intermolecular covalent bonding interactions can occur in multiple dimensions. Further disclosed are compositions comprising the disclosed compounds and process for the preparation thereof.
Abstract:
The present invention includes a novel salt-free water softening method that utilizes an exchange medium (such as a gel exchange polymer, a macroporous exchange polymer, or an inorganic cation exchanger) that is pre-loaded with a polyvalent cation that has low solubility in aqueous phase at nearly neutral pH. The method of the invention does not require use of a sodium salt or mineral acid in the regeneration of the exchange medium.
Abstract:
New semiconductor nanoparticles and manufacturing technologies, including novel methods, systems, and compositions, are provided herein. Robust, reproducible production of large amounts of semiconductor nanoparticles, such as quantum dots, from bacterial cultures during continuous growth is provided, without a need for extensive post growth processing or modification. The result is a novel semiconductor of nanoparticle dimensions and quality that is suitable for commercial applications in lighting, display, imaging, diagnostics, photovoltaics and hydrogen generation, for example. In one embodiment, bacterial-based synthesis methods for producing nanocrystal semiconductor quantum dots are provided by aqueous, environmentally friendly media and methods.
Abstract:
Disclosed are methods, systems, and apparatuses for the measurement of hybridization of nucleic acid polymers or binding other biological molecular species such as proteins, enzymes, receptors, and antibodies to binding partners, by backscattering interferometry (BSI).
Abstract:
Provided herein are synthetic porous electron-rich covalent organonitridic frameworks (PECONFs). The PECONFs are useful as an adsorbent class of materials. In the PECONFs, inorganic nitridic building units are interconnected via electron-rich aromatic units to form porous covalent frameworks. The frameworks include tunable porous, electron-rich organonitridic frameworks, which are determined based upon synthetic methods as exemplified herein.
Abstract:
A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.