Abstract:
A solar photovoltaic module laminate for electric power generation is provided. A plurality of solar cells are embedded within module laminate and arranged to form at least one string of electrically interconnected solar cells within said module laminate. A plurality of power optimizers are embedded within the module laminate and electrically interconnected to and powered with the plurality of solar cells. Each of the distributed power optimizers capable of operating in either pass-through mode without local maximum- power-point tracking (MPPT) or switching mode with local maximum-power- point tracking (MPPT) and having at least one associated bypass switch for distributed shade management.
Abstract:
Various laser processing schemes are disclosed for producing various types of hetero- junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero- junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.
Abstract:
High productivity thin film deposition methods and tools are provided wherein a thin film semiconductor material layer with a thickness in the range of less than 1 micron to 100 microns is deposited on a plurality of wafers in a reactor. The wafers are loaded on a batch susceptor and the batch susceptor is positioned in the reactor such that a tapered gas flow space is created between the susceptor and an interior wall of the reactor. Reactant gas is then directed into the tapered gas space and over each wafer thereby improving deposition uniformity across each wafer and from wafer to wafer.
Abstract:
Back contact back junction three dimensional solar cell and methods for manufacturing are provided. The back contact back contact back junction three dimensional solar cell comprises a three-dimensional substrate. The substrate comprises a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer is positioned on the doped backside emitter region. Backside emitter contacts and backside base contacts connected to metal interconnects and selectively formed on three-dimensional features of the backside of three-dimensional solar cell.
Abstract:
This disclosure presents manufacturing methods and apparatus designs for making TFSSs from both sides of a re -usable semiconductor template, thus effectively increasing the substrate manufacturing throughput and reducing the substrate manufacturing cost. This approach also reduces the amortized starting template cost per manufactured substrate (TFSS) by about a factor of 2 for a given number of template reuse cycles.
Abstract:
A method for the fabrication of a three-dimensional thin-film semiconductor substrate with selective through-holes is provided. A porous semiconductor layer is conformally formed on a semiconductor template comprising a plurality of three-dimensional inverted pyramidal surface features defined by top surface areas aligned along a (100) crystallographic orientation plane of the semiconductor template and a plurality of inverted pyramidal cavities defined by sidewalls aligned along the (111) crystallographic orientation plane of the semiconductor template. An epitaxial semiconductor layer is conformally formed on the porous semiconductor layer. The epitaxial semiconductor layer is released from the semiconductor template. Through-holes are selectively formed in the epitaxial semiconductor layer with openings between the front and back lateral surface planes of the epitaxial semiconductor layer to form a partially transparent three-dimensional thin-film semiconductor substrate.
Abstract:
Methods and systems for manufacturing thin-film solar cells utilizing a template having inverted pyramidal cavities defined by a plurality of walls aligned along a (111) crystallographic orientation plane and methods for manufacturing the template. Methods and systems for manufacturing thin-film solar cells utilizing a 3-D TFSS having a plurality of ridges on the surface of the semiconductor substrate defining a base opening of an inverted pyramidal cavity and walls defining an inverted pyramidal cavity and methods for manufacturing the 3-D TFSS. A 3-D TFSC comprising a semiconductor substrate with an inverted pyramidal cavity, emitter metallization regions on ridges on the surface of the semiconductor substrate which define an opening of the inverted pyramidal cavity, and base metallization regions on a region which form the apex of the inverted pyramidal cavity and methods for manufacturing the 3-D TFSC.
Abstract:
Methods and systems for manufacturing thin-film solar cells utilizing a template having inverted pyramidal cavities defined by a plurality of walls aligned along a (111) crystallographic orientation plane and methods for manufacturing the template. Methods and systems for manufacturing thin-film solar cells utilizing a 3-D TFSS having a plurality of ridges on the surface of the semiconductor substrate defining a base opening of an inverted pyramidal cavity and walls defining an inverted pyramidal cavity and methods for manufacturing the 3-D TFSS. A 3-D TFSC comprising a semiconductor substrate with an inverted pyramidal cavity, emitter metallization regions on ridges on the surface of the semiconductor substrate which define an opening of the inverted pyramidal cavity, and base metallization regions on a region which form the apex of the inverted pyramidal cavity and methods for manufacturing the 3-D TFSC.
Abstract:
Methods here disclosed provide for selectively coating the top surfaces or ridges of a 3-D substrate while avoiding liquid coating material wicking into micro cavities on 3-D substrates. The substrate includes holes formed in a three-dimensional substrate by forming a sacrificial layer on a template. The template includes a template substrate with posts and trenches between the posts. The steps include subsequently depositing a semiconductor layer and selectively etching the sacrificial layer. Then, the steps include releasing the semiconductor layer from the template and coating the 3-D substrate using a liquid transfer coating step for applying a liquid coating material to a surface of the 3-D substrate. The method may further include coating the 3-D substrate by selectively coating the top ridges or surfaces of the substrate. Additional features may include filling the micro cavities of the substrate with a filling material, removing the filling material to expose only the substrate surfaces to be coated, coating the substrate with a layer of liquid coating material, and removing said filling material from the micro cavities of the substrate.
Abstract:
Methods for manufacturing three-dimensional thin- film solar cells 100, using a template. The template comprises a template substrate comprising a plurality of posts and a plurality of trenches between said plurality of posts. The three-dimensional thin-film solar cell substrate is formed by forming a sacrificial layer on the template, subsequently depositing a semiconductor layer, selectively etching the sacrificial layer, and releasing the semiconductor layer from the template. The resulting three-dimensional thin-film solar cell substrate may comprise a plurality of single-aperture unit cells or dual-aperture unit cells. Select portions of the three-dimensional thin-film solar cell substrate are then doped with a first dopant, while other select portions are doped with a second dopant. Next, emitter 525 and base metallization regions 532 are formed.