Abstract:
A 3D image of a region of an object is computed from truncated cone beam projection data acquired with an x-ray device and a prior CT image representing a larger region of the object. The truncated projection data are extrapolated to derive pseudoprojection data associated with projection directions outside the detector, and an intermediate CT image is reconstructed based on the truncated projection data completed with the pseudoprojection data. The prior CT image is then registered with the intermediate CT image. Forward projection data associated with projection directions outside the detector are computed from the truncated projection data and the registered prior CT image. The 3D image is finally reconstructed based on the truncated projection data completed with the forward projection data.
Abstract:
The invention relates to a method for the computer-assisted visualization of a three-dimensional anatomical object, wherein firstly two or more diagnostic image data records (1, 3, 4, 5) of the object are recorded. Thereafter, an imaging specification is defined for imaging the image data (1, 3, 4, 5) onto a two-dimensional display plane (8), wherein in order to define the imaging specification anatomical features (2) of the object are identified in at least one of the image data records (1). Finally, a combined two-dimensional representation is calculated by imaging the two or more image data records (1, 3, 4, 5) according to the previously defined imaging specification onto a common display plane (8).
Abstract:
The invention relates to a method for data processing. At stage 3 the position of the reference object in the reference image and its relation to a set of reference landmarks in the reference image is established at step 6. In order to enable this, the reference imaging of learning examples may be performed at step 2 and each reference image may be analyzed at step 4, the results may be stored in a suitably arranged database. In order to process the image under consideration, the image is accessed at step 11, the suitable landmark corresponding to the reference landmark in the reference image is identified at step 13 and the spatial relationship established at step 6 is applied to the landmark thereby providing the initial position of the object in the actual image. In case when for the object an imaging volume is selected, the method 1 according to the invention follows to step 7, whereby the scanning 17 is performed within the boundaries given by the thus established scanning volume. In case when for the object a model representative of the target is selected, the method 1 follows to the image segmentation step 19, whereby a suitable segmentation is performed. In case when for the model a deformable model is selected, the segmentation is performed by deforming the model thereby providing spatial boundaries of the target area. The invention further relates to an apparatus and a computer program for image processing.
Abstract:
The present invention relates to a geometry planning software product for magnetic resonance system, comprising a database manager arranged to process an anatomical landmark set and a planning geometry of a current geometry planning session by forming a combination of both, and to add said combination to a database. The invention enables the learning of relevance of different anatomical structures for a specific planning geometry from user input. It also enables fully automated outlier detection.
Abstract:
A method for creating a model of a part of the anatomy from the scan data of several subjects is described. The method comprises the steps of collecting scan data; applying a feature detector to the scan data; converted the output of the feature detector into a common reference system; and accumulating the converted data to generate the model. It is therefore possible for the method to generate a model from the scan data of several subjects automatically. The method may also include an optional step of receiving user input to select which of the accumulated data should be included in the final model. This user input requires much less effort than manual contouring and is substantially independent of the number of subjects used to create the model.
Abstract:
The method 1 according to the invention is preferably practiced in real time and directly after a suitable acquisition 3 of the multi-dimensional dataset, which is accessed at step 5 and the images constituting the multi-dimensional dataset are classified at step 8. Preferably, for reducing an amount of data to be processed at step 6 the image data is subjected to a restrictive region of interest determination. At step 9 the classified cardiac images are subjected to a an image thinning operator so that the resulting images comprise a plurality of connected image components which are further analyzed at step 14. After the thinning step 9 a labeling step 11 is performed, where different connected components in the multi-dimensional dataset are accordingly labeled. This step is preferably followed by a region growing step 13, which is constrained by binary threshold used at step 8b. For each connected image component a factor F is computed at step 14. The anatomic structure is segmented at step 16 by selecting the connected image component with factor F meeting a pre-determined criterion. After this, the segmented anatomic structure is stored in a suitable format at step 18. The invention further relates to an apparatus, a working station, a viewing station and a computer program.
Abstract:
The method 1 according to the invention is preferably practiced in real time and directly after a suitable acquisition 3 of the multi-dimensional dataset, which is accessed at step 5 and the images constituting the multi-dimensional dataset are classified at step 8. Preferably, for reducing an amount of data to be processed at step 6 the image data is subjected to a restrictive region of interest determination. At step 9 the classified cardiac images are subjected to a an image thinning operator so that the resulting images comprise a plurality of connected image components which are further analyzed at step 14. After the thinning step 9 a labeling step 11 is performed, where different connected components in the multi-dimensional dataset are accordingly labeled. This step is preferably followed by a region growing step 13, which is constrained by binary threshold used at step 8b. For each connected image component a factor F is computed at step 14. The anatomic structure is segmented at step 16 by selecting the connected image component with factor F meeting a pre-determined criterion. After this, the segmented anatomic structure is stored in a suitable format at step 18. The invention further relates to an apparatus, a working station, a viewing station and a computer program.
Abstract:
The system (10) comprises an input (2) for accessing the suitable input data. The core of the system (10) is formed by a processor (4) which is arranged to operate the components of the system (10), it being the input (2), a computing unit (5), a working memory (6). The computing unit (5) preferably comprises a suitable number of executable subroutines (5a, 5b, 5c, 5d, 5e, and 5f) to enable a constructing of a geometric model of the movable body based on the results of the segmentation step, finding a spatial correspondence between the first and second image dataset, mapping the texture image dataset on geometric model, fusing the geometric model and the mapped texture image dataset. The apparatus (10) according to the invention further comprises a coder (7) arranged to code the determined region of interest in accordance to a pre-selected criterion. The criterion may be selectable from a list of valid criteria, stored in a file (7a). Preferably, the coder (7), the computing unit (5) and the processor (4) are operable by a computer program (3), preferably stored in memory (8). An output (9) is used for outputting the results of the processing, like fused image data representing the textured, preferably animated geometric model of the movable body. The invention further relates to a method for integration of medical diagnostic information and a geometric model of a movable body and to a computer program.
Abstract:
The system (10) comprises an input (2) for accessing the suitable input data. The core of the system (10) is formed by a processor (4) which is arranged to operate the components of the system (10), it being the input (2), a computing unit (5), a working memory (6). The computing unit (5) preferably comprises a suitable number of executable subroutines (5a, 5b, 5c, 5d, 5e, and 5f) to enable a constructing of a geometric model of the movable body based on the results of the segmentation step, finding a spatial correspondence between the first and second image dataset, mapping the texture image dataset on geometric model, fusing the geometric model and the mapped texture image dataset. The apparatus (10) according to the invention further comprises a coder (7) arranged to code the determined region of interest in accordance to a pre-selected criterion. The criterion may be selectable from a list of valid criteria, stored in a file (7a). Preferably, the coder (7), the computing unit (5) and the processor (4) are operable by a computer program (3), preferably stored in memory (8). An output (9) is used for outputting the results of the processing, like fused image data representing the textured, preferably animated geometric model of the movable body. The invention further relates to a method for integration of medical diagnostic information and a geometric model of a movable body and to a computer program.
Abstract:
The present invention relates to a method and a corresponding apparatus for visualization of a tubular structure of an object by use of a 3D image data set of said object. In order to provide a more efficient and illustrative visualization a method is proposed comprising the steps of: - generating and visualising a curved planar reformation view (C) from a symbolic pathway view (B) of said tubular structure, said symbolic pathway view (B) representing said tubular structure and the pathway points of said symbolic pathway being assigned with their 3D spatial position data, and - generating and visualising at least one planar view (O) of said object (1) through a viewing point (V) of said tubular structure selected in said curved planar reformation view (C) or said symbolic pathway view (B).