Abstract:
The present invention is directed to systems for prolonging battery life, such as maintaining battery cell temperatures in battery packs within specified limits, providing vibration and shock resistance, and/or electrically isolating groups of batteries from nearby conductive surfaces.
Abstract:
The present invention is directed to systems for prolonging battery life, such as maintaining battery cell temperatures in battery packs within specified limits, providing vibration and shock resistance, and/or electrically isolating groups of batteries from nearby conductive surfaces.
Abstract:
The present invention is directed to the termination of the occurrence of wheel skid and prediction and prevention of the onset of wheel slip/skid in a locomotive. In one configuration, a lookup table of adhesion factors is used to predict the occurrence of wheel slip/skid.
Abstract:
The present invention is directed to a power control architecture for a vehicle, particularly a locomotive, in which a number of energy sources (105, 111, 115) are connected to a common electrical bus (101, 102) and selectively provide energy to the bus (101, 102) based on the relationship between their respective output voltages and the bus voltage.
Abstract:
In one embodiment, a multi-engine locomotive includes at least one converter to convert mechanical energy outputted by the engines to Direct Current (DC) electrical energy, a traction motor, and a DC bus connected to the engines, converter, and traction motor. The engines are configured to provide a power-per-length and/or power density that is greater than the power-per-length and/or power density of a single-engine locomotive having a power rating approximately the same as the cumulative power rating of the engines in the multi-engine locomotive.
Abstract:
The present invention relates generally to regenerative braking methods for a hybrid vehicle such as a hybrid locomotive, which are compatible with optimum management of a large battery pack energy storage system. Four methods for recovering energy from regenerative braking and for transferring this energy to an energy storage systems are disclosed. These methods may also be used with battery operated vehicles.
Abstract:
A locomotive is provided that includes: a receiver operable to receiving a locating signal, the locating signal indicating a current spatial location of a selected locomotive and a processor operable to (a) determine that the selected locomotive has entered, is entering, and/or is about to enter a spatial zone having at least one controlled parameter, the controlled parameter being at least one of a fuel combustion emissions level and a noise level and (b) configure the operation of the selected locomotive to comply with the controlled parameter.
Abstract:
A battery pack is provided that includes a plurality of battery cells electrically connected in series, the plurality of battery cells including a selected battery cell, and a shorting mechanism operable, upon the occurrence of a selected event, to automatically remove electrically the selected battery cell from the electrically connected battery cells.
Abstract:
The present invention is directed to the termination of the occurrence of wheel skid and prediction and prevention of the onset of wheel slip/skid in a locomotive. In one configuration, a lookup table of adhesion factors is used to predict the occurrence of wheel slip/skid.