Abstract:
The present invention discloses apparatuses, systems, and methods for controlling liquid impact pressure in liquid impact systems. The liquid impact systems include at least one gas and a liquid, the gas having a density ( PG ) and a polytropic index (κ) and the liquid having a density ( PL ). The methods include the step of calculating a liquid impact load of the liquid on the object by determining a parameter Ψ for the system, wherein Ψ is defined as ( PG/PL )(κ-1)/κ. The systems are also configured to utilize the parameter Ψ. The parameter Ψ may be adjusted to increase or reduce the liquid impact load on the system. Automatic, computer-implemented systems and methods may be used or implemented. These methods and systems may be useful in applications such as LNG shipping and loading/off-loading, fuel tank operation, manufacturing processes, vehicles dynamics, and combustion processes, among others.
Abstract:
A method and system for transporting fluid is described. The method includes coupling a transit vessel to a terminal vessel associated with at least one terminal. The transit vessel and the terminal vessel are coupled at an open sea or lightering location, which may be selected based upon operational conditions. Then, cryogenic fluid is transferred between the transit vessel and the terminal vessel, while the transit vessel and terminal vessel are moving in substantially the same direction. Once the transfer is complete, the terminal vessel decouples from the transit vessel and moves a terminal to provide the cryogenic fluid to the terminal. The cryogenic fluid may include liquefied natural gas (LNG) and/or liquefied carbon dioxide (CO 2 ).
Abstract:
A method of treating a tumor, comprising creating an elevated concentration of free radicals in said tumor (22) and creating a magnetic field (20) that traverses said tumor (22) and that inhibits the recombination of said free radicals in said tumor. A magnetic field of 0.1 mTesla to 10 mTesla is generally used for this purpose.
Abstract:
A method of creating and sustaining an elevated level of free radicals in a volume of targeted tissue that utilizes targeted nanostructures (16) that include a metallic component (26) that acts to amplify the effects of a free radical-producing stimulus; a magnetic component; and a binding component (24) that acts to bind to cellular components present in the targeted tissue. To practice the method, the targeted nanostructures are introduced into the targeted tissue and a free radical-producing stimulus, which may be in the form of a particle beam (20) is provided at the targeted tissue volume.
Abstract:
In the treatment of a tumor (126) with radiation therapy (122) is enhanced by a weak magnetic field (130), the field strength time sequence of exposure and shape and contour of the magnetic field are varied to achieve desired results. In one separate aspect, exposure to a magnetic field (130) is continued after exposure to a free radical-creating therapy is ceased or diminished, thereby increasing the lifetimes of free radicals that have already been created. In another preferred embodiment a magnetic field (13) is strategically placed to avoid extending the lives of free radicals in tissue through which a free radical-creating beam must pass, to reach a tumor. This application discloses quantitative parameters for field strength and exposure time to create concentrations and reactivity of free radicals, including long-lived free radicals and discloses the use of shaped, contoured, and designed electromagnetic fields. A treatment planning station (200) is also disclosed.
Abstract:
Electrical contact to the front side of a photovoltaic cell is provided by an array of conductive through-substrate vias, and optionally, an array of conductive blocks located on the front side of the photovoltaic cell. A dielectric liner provides electrical isolation of each conductive through-substrate via from the semiconductor material of the photovoltaic cell. A dielectric layer on the backside of the photovoltaic cell is patterned to cover a contiguous region including all of the conductive through-substrate vias, while exposing a portion of the backside of the photovoltaic cell. A conductive material layer is deposited on the back surface of the photovoltaic cell, and is patterned to form a first conductive wiring structure that electrically connects the conductive through-substrate vias and a second conductive wiring structure that provides electrical connection to the backside of the photovoltaic cell.
Abstract:
A solar concentrator includes an optical member having a focal point. The optical member is configured and disposed to direct incident solar radiation to the focal point. A support member is positioned adjacent to the focal point of the optical member. A solar energy collector is supported upon the support member. The solar energy collector is positioned at the focal point of the optical member. A base member is positioned in a spaced relationship from the support member. The base member and the support member define a chamber section that is in a heat exchange relationship with the solar energy collector. The chamber section is configured to absorb and dissipate heat from the solar energy collectors.
Abstract:
The described invention relates to an integrated LNG re-gasification apparatus suitable for broad use and effective utilization of LNG containers comprising: a) modular storage tank holding structures adapted for storing and accessing LNG containerized in one or more storage tanks; b) a heat exchange re-gasification chamber adapted for converting said LNG to natural gas using a working fluid of higher temperature than the LNG; c) fluid transfer means for transporting the LNG from said storage tanks to the at least one heat exchange re-gasification chamber; d) at least one working fluid holding tank; e) fluid transfer means for transporting the working fluid from said holding tank to the at least one heat exchange re-gasification chamber; f) fluid transfer means for transporting a cooled working fluid, to one or more ancillary refrigeration or air conditioning units.
Abstract:
Methods for detecting a liquid under a surface and characterizing Ice are provided The liquid may be a liquid hydrocarbon such as crude oil or fuel oil or mineral oil The surface may be ice, snow, or water, and the method may be practiced in an arctic region to detect oil spills, leaks, or seepages The methods may be used with a range finder to characterize marine ice The methods may include a nuclear magnetic resonance (NMR) tool with antenna to send a radio-frequency (RF) excitation pulse or signal into volume of substances being detected, detect an NMR response signal to determine the presence of the liquid of interest The NMR response may include a relaxation time element and an intensity level and may include a free induction signal (T2*), a spin echo signal (T2), a train of spin echo signals (T2), or a thermal equilibrium signal (T 1).
Abstract:
A tank is provided that reduces sloshing pressures in the corner sections of a tank, such as an LNG membrane tank. The tank includes a sloshing impact reduction system placed in selected corner sections within the tank. The system serves as a slosh attenuation system, and reduces the severity of the corner geometry and improves the flow of fluids into the tank corner. In one embodiment, an impermeable structure is disposed in an internal corner section of the tank. The impermeable structure may be a triangular planar surface, or a non-planar structural surface. The non-planar structural surface may be a concave surface or other curved surface. In another arrangement, a permeable structure is placed in an internal corner section of the tank. Such a permeable structure would enable fluid to pass through the device, but would reduce the fluid velocities and accelerations via friction or eddies. The permeable structure may be either rigid or flexible.