Abstract:
A polymerization process comprises contacting one or more olefinic comonomers in the presence of at least a high molecular weight catalyst and at least a low molecular weight catalyst in a single reactor; and effectuating the polymerization of the olefinic comonomers in the reactor to obtain an olefin polymer. Preferably, both catalysts have the ability to incorporate a substantially similar amount of comonomers in the olefin polymer. The polymers produced by the process may have a relatively higher level of long chain branching while maintaining a relatively narrow molecular weight distribution, i.e., MWD less than about 6. These interpolymers may exhibit processability similar to or better than LDPE but have physical properties similar to metallocene catalyzed polymers.
Abstract:
A polymer composition comprises: (a) a high molecular weight, branched component; and (b) a low molecular weight, branched component. Some polymer compositions are characterized by a substantial absent of amyl or methyl branches and a melt strength (MS) that satisfies the following relationship, formula (I), where x is greater than or equal to about 12.5 and y is greater than or equal to about 3. Some polymers are characterized by a melt strength (MS) that satisfies the following relationship, formula (II), where x is greater than or equal to about 3 and y is greater than or equal to about 4.5 and a molecular weight distribution of greater than 3. A process for making polymers is also disclosed.
Abstract:
Elastic ethylene polymers are disclosed which have processability similar to highly branched low density polyethylene (LDPE), but the strength and toughness of linear low density polyethylene (LLDPE). The polymers have processing indices (PI's) less than or equal to 70 percent of those of a comparative linear ethylene polymer and a critical shear rate at onset of surface melt fracture of at least 50 percent greater than the critical shear rate at the onset of surface melt fracture of a traditional linear ethylene polymer at about the same I2, density and Mw/Mn. The novel polymers can also have from 0.01 to 3 long chain branches/1000 total carbons and have higher low/zero shear viscosity and lower high shear viscosity than comparative linear ethylene polymers. The novel polymers can also be characterized as having a melt flow ratio, I10/I2, >/= 5.63, a molecular weight distribution, Mw/Mn, defined by the equation: Mw/Mn dyne/cm , and a single DSC melt peak between -30 DEG C and 150 DEG C.
Abstract:
A light splitting optical module that converts incident light into electrical energy, the module including a solid optical element comprising an input end for receiving light, a first side, and a second side spaced from the first side, a first solar cell adjacent to the first side of the solid optical element, and a second solar cell adjacent to the second side of the solid optical element. The first solar cell is positioned to absorb a first subset of incident light and reflect a first remainder of the incident light to the second solar cell through the solid optical element.
Abstract:
The present invention provides photovoltaic devices that comprise multiple bandgap cell arrays in combination with spectrum splitting optics. The spectrum splitting optics include one or more optical spectrum splitting modules that include two or more optical splitting, diffractive elements that are optically in series to successively and diffractively split incident light into segments or slices that are independently directed onto different photovoltaic cell(s) of the array having appropriate bandgap characteristics.
Abstract:
The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region.
Abstract:
The invention is a photovoltaic device comprising a photovoltaic cell assembly with an injection molded portion connected to at least one edge of the photovoltaic cell assembly where the body portion has properties and a composition enabling robust function over a period of years when the photovoltaic device is mounted on the exterior of a building.
Abstract:
A data acquisition system for a vehicle, including a plurality of sensors for sensing the value of a condition relative to the vehicle; at least one collector electronically connected with and configured to receive first data from at least one of the sensors and configured to output second data to a host controller; a host controller electronically connected with and configured to receive second data from at least one collector and configured to store the second data for later access; and, fiber optic cable means connected between the host controller and the at least one collector for carrying the second data from the at least one collector to the host controller.
Abstract:
Catalyst compositions that are highly tolerant of catalyst poisons for use in addition polymerizations comprising a catalytic derivative of a Group 4 metal complex, a cocatalyst, and a Group 13 metal amide compound.
Abstract:
Polymer blends that exhibit good impact resistance comprise a crystalline polypropylene matrix and a partly crystalline copolymer impact modifier with a molecular weight lower than that of the matrix polymer. The matrix polymer can comprise any crystalline propylene homo- or copolymer. The impact modifying copolymers are characterized as comprising at least about 60 weight percent (wt.%) of units derived from propylene and, in certain embodiments, as having at least one, preferably two or more, of the following properties: (i) 13 C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content of the copolymer is at least about 3 wt.%, (iii) a skewness index, S ix , greater than about -1.20, (iv) a DSC curve with a T me that remains essentially the same and a T max that decreases as the amount of comonomer in the copolymer is increased, and (v) an X-ray diffraction pattern that reports more gamma-form crystals than a comparable copolymer prepared with a Ziegler-Natta (Z-N) catalyst.