Abstract:
A novel method, which is suitable to substantially reduce the presence of oxygen micro-bubbles in an electroplating bath solution, is disclosed. The method includes the addition of aerobic bacteria to the electroplating bath solution to consume oxygen in the solution. Reduction of the oxygen content in the electroplating bath solution prevents oxygen micro-bubbles from forming in the solution and becoming trapped between the solution and the surface of a metal seed layer on a substrate to block the electroplating of a metal film onto the seed layer. Consequently, the presence of surface pits and other structural defects in the surface of the electroplated metal film is substantially reduced.
Abstract:
In one embodiment, a networking hardware element (1100, 3100) capable of coupling computer network elements (1010) comprises a network diagnostic mechanism (2140) that is capable of mapping the computer network elements and that is also capable of determining a connection status for the computer network elements. The networking hardware element also comprises a display (2110, 3110, 5110) that is capable of communicating with the network diagnostic mechanism and that is also capable of displaying a network layout map (2111, 5111) of representations of the computer network elements and the connection status of the computer network elements.
Abstract:
A plate and fin type heat exchanger has a heat exchanger core made from a plurality of stacked, alternating first and second heat exchange plates of a generally inverted, U-shaped cross-section. Each plate has a top wall, closed peripheral sidewalls and open ends, and the open ends of the first plates are oriented at 90° to the open ends of the second plates. The sidewalls of the plates have end portions, which in adjacent plates, are aligned to form corners of the heat exchanger core. Opposed U-shaped manifold bodies are provided having open ends and lateral walls joined in a fluid tight manner to the aligned plate sidewall end portions. End plates close off the open ends of the U-shaped bodies to form manifolds. The corners formed by the aligned plate sidewall end portions allow for an improved connection between the heat exchanger core and the U-shaped manifold bodies. This helps to ensure that a fluid tight seal is created between the heat exchanger core and the manifold bodies when the components are joined together.
Abstract:
An interconnection in an insulating layer on a wafer is described herein. A wafer having a plurality of conductive lines thereon is provided. An insulating layer is formed over the conductive lines. Two via holes are formed in the insulating layer to expose two of the conductive lines waiting to be repaired. A first conductive layer is filled into the via holes to form two pattern marks. A mask is formed over the wafer to cover the insulating layer and the two pattern marks. The mask located above and between the two pattern marks is removed to form a trench exposing the two pattern marks and a portion of the insulating layer. A second conductive layer is formed over the mask to cover the two exposed pattern marks and the exposed insulating layer. The mask and the second conductive layer above the mask are removed simultaneously.
Abstract:
A method of forming a copper interconnect in a dual damascene scheme is described. After a diffusion barrier layer and seed layer are sequentially formed on the sidewalls and bottoms of a trench and via in a dielectric layer, a first copper layer is deposited by a first ECP process at a 10 mA/cm2 current density to fill the via and part of the trench. A first anneal step is performed to remove carbon impurities and optionally includes a H2 plasma treatment. A second ECP process with a first deposition step at a 40 mA/cm2 current density and second deposition step at a 60 mA/cm2 current density is used to deposit a second copper layer-that overfills the trench. After a second anneal step, a CMP process planarizes the copper layers. Fewer copper defects, reduced S, Cl, and C impurities, and improved Rc performance are achieved by this method.
Abstract translation:描述了在双镶嵌方案中形成铜互连的方法。 在扩散阻挡层和种子层依次形成在电介质层中的沟槽和通孔的侧壁和底部上之后,通过第一ECP工艺以10mA / cm 2 / >电流密度以填充通孔和部分沟槽。 进行第一退火步骤以除去碳杂质,并且任选地包括H 2 O 3等离子体处理。 使用在40mA / cm 2电流密度下的第一沉积步骤和以60mA / cm 2电流密度进行第二沉积步骤的第二个ECP工艺来沉积 第二铜层 - 过度填充沟槽。 在第二退火步骤之后,CMP工艺使铜层平坦化。 通过该方法可以实现更少的铜缺陷,降低的S,Cl和C杂质,以及Rc性能的提高。
Abstract:
A method of forming a copper interconnect in a dual damascene scheme is described. After a diffusion barrier layer and seed layer are sequentially formed on the sidewalls and bottoms of a trench and via in a dielectric layer, a first copper layer is deposited by a first ECP process at a 10 mA/cm2 current density to fill the via and part of the trench. A first anneal step is performed to remove carbon impurities and optionally includes a H2 plasma treatment. A second ECP process with a first deposition step at a 40 mA/cm2 current density and second deposition step at a 60 mA/cm2 current density is used to deposit a second copper layer-that overfills the trench. After a second anneal step, a CMP process planarizes the copper layers. Fewer copper defects, reduced S, Cl, and C impurities, and improved Rc performance are achieved by this method.
Abstract translation:描述了在双镶嵌方案中形成铜互连的方法。 在扩散阻挡层和种子层依次形成在电介质层中的沟槽和通孔的侧壁和底部上之后,通过第一ECP工艺以10mA / cm 2 / >电流密度以填充通孔和部分沟槽。 进行第一退火步骤以除去碳杂质,并且任选地包括H 2 O 3等离子体处理。 使用在40mA / cm 2电流密度下的第一沉积步骤和以60mA / cm 2电流密度进行第二沉积步骤的第二个ECP工艺来沉积 第二铜层 - 过度填充沟槽。 在第二退火步骤之后,CMP工艺使铜层平坦化。 通过该方法可以实现更少的铜缺陷,降低的S,Cl和C杂质,以及Rc性能的提高。
Abstract:
The NYTBridge allows a user to bridge the gap between data collected by hand-held scanning devices and conventional databases used in the field of inventory management without database or procedural programming knowledge on the part of the user. The NYTBridge does this by first allowing the user to access an existing database. The user may then select data fields, such as the location of an item in inventory, from the database without writing coded database queries. The NYTBridge then allows the user to download the selected data fields as a data set along with a scanner program that will read the created data set. Both the data set and the scanner program are either saved on a PCMCIA card to be used in a scanner, or downloaded directly into the hand held scanner via either serial port communication or communication dock tethering. When the scanner program is run on the scanner, the scanner program creates a scanner file for the collected, verified and/or corrected data. After the data is collected, verified and/or corrected, NYTBridge reads the scanner file from the hand held scanner and allows the user to update the relational database. The NYTBridge utilizes a graphical user interface and does not require low level programming by the user at any stage of the inventory management process.
Abstract:
A router receives a packet at an ingress interface. The router classifies the received packet based on at least a first field value contained in the header of the packet. According to the classification of the received packet, the router associates one of the plurality of forwarding tables to the packet. The router then performs a lookup operation in the associated forwarding table according to at least a second field value contained in the header of the packet. Based on the lookup operation, the router determines an egress interface and transmits the received packet from the determined egress interface.
Abstract:
Techniques are described for implementing one or more logical routers within a single physical routing device. These logical routers, as referred to herein, are logically isolated in the sense that they achieve operational and organizational isolation within the routing device without requiring the use of additional or redundant hardware, e.g., additional hardware-based routing controllers. The routing device may, for example, include a computing platform, and a plurality of software process executing within the computing platform, wherein the software processes operate as logical routers. The routing device may include a forwarding component shared by the logical routers to forward network packets received from a network in accordance with the forwarding tables.