Abstract:
A method and system for managing energy usage in a building is provided. The method includes collecting data on energy consumption in the building on a generally continuous basis for at least a given time period. Information relating to the energy consumption is displayed to a user on one or more devices. The information includes (a) the data collected on energy consumption to be displayed in real-time on the one or more devices, (b) a comparison of the data collected on energy consumption in the building to energy consumption data of a cohort or group of cohorts, (c) recommendations for reducing energy consumption in the building based on the data collected on energy consumption, and (d) progress report data comparing the data collected on energy consumption to a desired consumption level.
Abstract:
A facility comprising systems, methods, and techniques for collecting data indicative of energy consumption and/or energy production by energy systems and devices and providing the data to interested users and devices in real-time is described. The facility may comprise an energy gateway device coupled to one or more monitored devices, one or more energy data extraction servers, and one or more client computers. The energy gateway devices and energy data extraction servers are coupled to a network and are configured to collect energy consumption and/or energy production data from one or more devices and provide an indication of the collected data in real-time or near real-time. The facility may collect current energy consumption or production rates, predicted energy consumption or production levels over a future period of time, and/or amounts of energy that has been consumed or produced by the device over a previous period of time.
Abstract:
A facility for performing setpoint adjustment-based duty cycling techniques by adjusting the setpoint of a device or component is described. The facility reduces energy consumption for a system, such as an HVAC system, or device by adjusting or modulating an associated setpoint or temperature setting. The facility modulates the setpoint between a base setpoint value and another setpoint value based on a mode of the system. When the system is in a cooling mode, the facility modulates the temperature between the base setpoint value and a higher setpoint value. When the system is in heating mode, the facility modulates the temperature between the base setpoint value and a lower setpoint value. The facility may modulate the setpoint between the two setpoint values based on an offset value or a fixed setpoint value.
Abstract:
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
Abstract:
A facility for performing setpoint adjustment-based duty cycling techniques by adjusting the setpoint of a device or component is described. The facility reduces energy consumption for a system, such as an HVAC system, or device by adjusting or modulating an associated setpoint or temperature setting. The facility modulates the setpoint between a base setpoint value and another setpoint value based on a mode of the system. When the system is in a cooling mode, the facility modulates the temperature between the base setpoint value and a higher setpoint value. When the system is in heating mode, the facility modulates the temperature between the base setpoint value and a lower setpoint value. The facility may modulate the setpoint between the two setpoint values based on an offset value or a fixed setpoint value.
Abstract:
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
Abstract:
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
Abstract:
A facility implementing systems and/or methods for achieving energy consumption/production and cost goals is described. The facility identifies various components of an energy system and assesses the environment in which those components operate. Based on the identified components and assessments, the facility generates a model to simulate different series/schedules of adjustments to the system and how those adjustments will effect energy consumption or production. Using the model, and based on identified patterns, preferences, and forecasted weather conditions, the facility can identify an optimal series or schedule of adjustments to achieve the user's goals and provide the schedule to the system for implementation. The model may be constructed using a time-series of energy consumption and thermostat states to estimate parameters and algorithms of the system. Using the model, the facility can simulate the behavior of the system and, by changing simulated inputs and measuring simulated output, optimize use of the system.