Abstract:
The technology disclosed herein provides accurate, targeted, building improvement content in a way that resonates with the user by considering the user's whole ecosystem. The technology uses details of the user's home, neighborhood, family, environmental and historical factors, goals, economic situation, and motivations and preferences to tailor content to a user's personal situation. A server or other computing device may accomplish this by receiving data from the client, a third party, or data local to the server; building modeling constructs based on these data sets such as a physics-based model of the building and a behavioral model of the user; operating these models relative to possible discrete building improvement content units; and using the results to determine personalized building improvement content for the user such as, for example, a webpage.
Abstract:
An apparatus and method for dynamically licensing access to wireless network information provides multiple third parties with selective access to network device information in real-time. Information is collected in real-time from a plurality of sensing and control devices configured in a network arrangement. Information may be collected from each of the sensing and control devices regardless of the communication protocol associated with the device. The collected information is stored and aggregated by a service broker, which selectively licenses access to the information, or subsets of the information, to one or more third parties.
Abstract:
The technology disclosed herein provides accurate, targeted, building improvement content in a way that resonates with the user by considering the user's whole ecosystem. The technology uses details of the user's home, neighborhood, family, environmental and historical factors, goals, economic situation, and motivations and preferences to tailor content to a user's personal situation. A server or other computing device may accomplish this by receiving data from the client, a third party, or data local to the server; building modeling constructs based on these data sets such as a physics-based model of the building and a behavioral model of the user; operating these models relative to possible discrete building improvement content units; and using the results to determine personalized building improvement content for the user such as, for example, a webpage.
Abstract:
A facility implementing systems and/or methods for achieving energy consumption/production and cost goals is described. The facility identifies various components of an energy system and assesses the environment in which those components operate. Based on the identified components and assessments, the facility generates a model to simulate different series/schedules of adjustments to the system and how those adjustments will effect energy consumption or production. Using the model, and based on identified patterns, preferences, and forecasted weather conditions, the facility can identify an optimal series or schedule of adjustments to achieve the user's goals and provide the schedule to the system for implementation. The model may be constructed using a time-series of energy consumption and thermostat states to estimate parameters and algorithms of the system. Using the model, the facility can simulate the behavior of the system and, by changing simulated inputs and measuring simulated output, optimize use of the system.
Abstract:
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
Abstract:
A facility employing systems, methods, and/or techniques for dynamically and adaptively configuring configurable energy consuming and producing devices (e.g., smart energy devices) based on user profiles and user presence information is disclosed. In some embodiments, the facility periodically detects the presence of users, and retrieves preference information for those users. For each of one or more configurable energy devices in the area, the facility generates a combined setting based on the preferences of each user present and adjusts the devices based on the combined settings. For example, if User A, User B, and User C are present in a room and User A's preferred temperature setting is 75° F., User B's preferred temperature setting is 68° F., and User C's preferred temperature setting is 70° F., the facility may generate a combined setting for a thermostat by taking the average value of the users in the room.
Abstract:
A facility for performing setpoint adjustment-based duty cycling techniques by adjusting the setpoint of a device or component is described. The facility reduces energy consumption for a system, such as an HVAC system, or device by adjusting or modulating an associated setpoint or temperature setting. The facility modulates the setpoint between a base setpoint value and another setpoint value based on a mode of the system. When the system is in a cooling mode, the facility modulates the temperature between the base setpoint value and a higher setpoint value. When the system is in heating mode, the facility modulates the temperature between the base setpoint value and a lower setpoint value. The facility may modulate the setpoint between the two setpoint values based on an offset value or a fixed setpoint value.
Abstract:
Methods and systems for providing consumer directed energy management are described. Consumer defined triggers provide consumers and utilities with the ability to control residential energy usage, by managing manage multiple residential load control elements. A user interface is provided separately from the load control elements to allow the consumer to define his or her schedule and preferences for the purposes of controlling the multiple load control elements. In addition, settings on load control elements can be automatically adjusted based on information about consumer schedules and preferences obtained from other sources. In some embodiments, a utility interface allows utilities to implement improved energy load control. When a utility expects to implement a load control event, the utility can monitor consumer schedules and/or preferences, in order to achieve the desired energy reduction while reducing the impact on participating consumers' comfort.
Abstract:
The technology disclosed herein provides accurate, targeted, building improvement content in a way that resonates with the user by considering the user's whole ecosystem. The technology uses details of the user's home, neighborhood, family, environmental and historical factors, goals, economic situation, and motivations and preferences to tailor content to a user's personal situation. A server or other computing device may accomplish this by receiving data from the client, a third party, or data local to the server; building modeling constructs based on these data sets such as a physics-based model of the building and a behavioral model of the user; operating these models relative to possible discrete building improvement content units; and using the results to determine personalized building improvement content for the user such as, for example, a webpage.
Abstract:
Systems and methods for providing collaborative energy benchmarking are described. Information including background data, energy consumption data, temporal data, and/or other information is gathered from multiple sources and stored in a central database. Based on the stored information, energy benchmarks are created for measuring residential energy usage. Energy usage data is displayed to consumers in multiple formats, and permits consumers to directly compare their energy usage data to other consumers or groups of consumers, in addition to their own energy usage. In some embodiments, energy challenge programs encourage reduction of energy usage. Through such programs, consumers create and present challenges for themselves and/or other consumers, such as to reduce energy usage during a given timeframe. The progress of the group and individual consumers is displayed during the course of a challenge.