Abstract:
An ultraviolet fluid treatment system having feedback control using a kinetic model and a reactor model that interact with one another. The kinetic model uses readily measured fluid properties upstream and downstream of a radiation zone to calculate the conversion of a target contaminant as it passes through the fluid treatment system. This obviates the need to measure the contaminant concentration directly, which generally is too slow to permit real-time control. A reactor model relates system operating cost to system operating parameters, such as electrical power consumption and/or rate of oxidant addition, where applicable. The reactor model is linked to the kinetic model and is used to optimize operating cost by adjusting system operating parameters based on a comparison between the conversion obtained from the kinetic model and the overall treatment objectives. A control center, an ultraviolet fluid treatment apparatus, and a method of treating a fluid are also disclosed.
Abstract:
A radiation source module comprising a support member, a radiation source assembly connected to the support member, the radiation source assembly comprising at least one elongate radiation source having a source longitudinal axis and a module-to-surface seal disposed on a first elongate surface of the module, the first elongate surface comprising a first longitudinal axis transverse to the source longitudinal axis, the seal operable to provide a substantially fluid tight seal between the first surface and a second surface which is adjacent to the first surface. A fluid treatment system employ the radiation source module is also described.
Abstract:
A cleaning formulation comprising a cleaning agent, a particulate clay material and an aqueous carrier. In a preferred embodiment, the formulation has a pH less than about 1.0 and is characterized by: (i) at least a 90% reduction in viscosity at 25°C at a shear rate of up to about 0.10 s -1 , and (ii) a substantially unchanged viscosity for a period of at least 60 days. The cleaning formulation is thixotropic and has a highly desirable combination of acid stability, temperature stability, electrolyte stability and ultraviolet radiation stability.
Abstract:
An optical radiation sensor comprising a housing having an inlet which allows radiation to enter the housing, and further comprising the following elements serially disposed after the inlet in the path of the radiation: attenuating aperture means, filter means and sensor means. The attenuating aperture means reduce the amount of UV radiation on the sensor means and improve the sensors resistance to degradation in a high intensity UV radiation environment. A fluid disinfection system incorporating the sensor is also described.
Abstract:
A fluid disinfection unit comprising a fluid treatment housing, an electrical supply module and electrical connection means connecting the fluid treatment housing and the electrical supply module; the fluid treatment housing comprising a fluid inlet and a fluid outlet in communication with a reaction chamber, an ultraviolet radiation lamp disposed in the reaction chamber and having a first electrical connection receiving means at a first end thereof and a second end thereof being closed, the second end of the ultraviolet radiation lamp being received and held in place by fixture means; the electrical supply module comprising ballast means and a second electrical connection receiving means; and the electrical connection means comprising lamp receptacle connector means at one end thereof for removable connection to the ultraviolet radiation lamp and electrical connection receiving means for connection to the electrical supply module.
Abstract:
A fluid treatment system includes one or more radiation sources arranged in an irradiation zone within a treatment zone through which fluid to be treated passes and is irradiated. The irradiation zone has a closed cross section to maintain the fluid within a predefined maximum distance from the radiation source. Preferably, the irradiation zone comprises a reduced cross-sectional area perpendicular to the direction of fluid flow and thus the fluid flow velocity is increased through the irradiation zone. This allows the fluid to enter the treatment zone at relatively low speed, traverse the irradiation zone at high speed and exit the treatment zone again at relatively low speed to minimize the loss of hydraulic head throughout the system. Fluid entering the treatment zone passes through an inlet transition region wherein the cross-sectional area is reduced prior to entering the irradiation zone and fluid exiting the irradiation zone passes through an outlet transition region wherein the cross-sectional area is increased. Each transition region is designed to reduce hydraulic head losses as the fluid flow velocity is increased and decreased. In the irradiation zone, radiation sources are mounted on radiation modules which are arranged to provide improved accessibility for maintenance. The radiation modules may also be provided with cleaning assemblies which are operable to remove materials fouling the radiation sources in situ while the radiation sources are in the irradiation zone.
Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprises: an elongate member having an annular cross-section to define an elongate passageway aligned with a longitudinal axis of the lamp assembly; an electrode element in electrical connection with at least a portion of the elongate passageway; and a cooling element disposed in the elongate passageway, the cooling element being electrically isolated with respect to the electrode element.
Abstract:
There is disclosed a lamp device comprising a longitudinal axis, a first elongate electrical connector and a second elongate electrical connector, each of the first elongate electrical connector and the second elongate connector being non- parallel with respect to the longitudinal axis. The present lamp device provides a reliable electric connection on the one hand, yet is relatively inexpensive, uncomplicated and simple to implement on the other hand.
Abstract:
The invention relates to a radiation sensor device comprising a housing, a radiation sensor secured with respect to a first portion of the housing and a heat pipe in thermal communication with the first portion of the housing, the heat pipe being configured to transfer heat from portion of the house to a second portion of the housing remote from the first portion of the housing. The heat pipe may be used advantageously to transport or transfer heat away from the sensor components of the device to an area remote therefrom. The heat pipe can be used to transfer heat at a rate that is thousands of times higher than copper. The radiation sensor device may be used in an ultraviolet radiation fluid treatment system such as an ultraviolet radiation water disinfection system.
Abstract:
There is disclosed a water treatment appliance, particularly for on-the-counter treatment of potable water. The appliance comprises: a base unit comprising a pump, a housing and a cooling unit for chilling water in the housing; a removable water reservoir engageable with the housing; a control panel comprising a water dispensing switch;an outlet for dispensing treated water from the fluid treatment system; and a treatment cartridge removably disposed in the housing. The treatment cartridge comprises a first chamber and a second chamber in communication with one another. The first chamber is in communication with the housing and has disposed therein a filter element. The second chamber is in communication with the outlet and has disposed therein an ultraviolet radiation lamp.