-
公开(公告)号:CN110149237A
公开(公告)日:2019-08-20
申请号:CN201910510953.5
申请日:2019-06-13
Applicant: 东北大学
Abstract: 本发明提出一种Hadoop平台计算节点负载预测方法,包括:基于滑动窗口二次检测算法的数据预处理方法;基于ARIMA算法的节点负载线性预测方法;基于RNN算法的节点负载非线性残差预测方法;将ARIMA算法与RNN算法预测出来的结果进行线性相加作为最终的预测结果;本发明通过对各个结算节点历史数据的分析,可以提取有价值的信息,进而合理预测下一时间段内的计算节点的负载,精确预测计算节点的负载可以为资源管理器合理地给AppMaster分配资源提供依据,进而缓解高负载节点的压力,提升低负载节点的计算资源利用率,提高Hadoop集群的可靠性和性能。本发明通过ARIMA和RNN模型组合,更加精确的对负载进行预测。
-
公开(公告)号:CN109993095A
公开(公告)日:2019-07-09
申请号:CN201910230227.8
申请日:2019-03-26
Applicant: 东北大学
Abstract: 本发明提供一种面向视频目标检测的帧级别特征聚合方法,涉及计算机视觉技术领域。本发明提供的面向视频目标检测的帧级别特征聚合方法,首先通过特征网络从单帧图像中提取深层的特征;然后使用光流网络FlowNet提取帧间的光流;并基于光流将相邻帧的帧级别特征对齐到当前帧,实现帧级别的特征传播;最后通过映射网络和权重放缩网络计算放缩余弦相似性权重,并使用放缩余弦相似性权重聚合多帧特征,生成聚合后的特征;本发明提供的面向视频目标检测的帧级别特征聚合方法,使得权重分配更加合理,将聚合后的特征输入到视频目标检测网络中,能够使在运动模糊、像素低、镜头变焦、遮挡等复杂场景下的视频检测具有较好的检测效果,具有鲁棒性。
-
公开(公告)号:CN110221909B
公开(公告)日:2023-01-17
申请号:CN201910510535.6
申请日:2019-06-13
Applicant: 东北大学
Abstract: 本发明提出一种基于负载预测的Hadoop计算任务推测执行方法,包括:资源管理器对备份任务数自适应调整,得到最大备份任务数;预测执行任务完成时间;将最大备份任务数与APPmaster设置的备份任务数比较,取最小值作为备份任务数阈值;判断备份任务数是否小于等于备份任务数阈值;判断任务数是否小于总任务数;预测备份任务完成时间;判断备份任务完成时间和执行任务完成时间大小,确定是否开启备份;本发明保证了当集群计算资源紧张的情况下,备份任务的开启不会对其他作业产生影响;执行任务的完成时间预测算法,有效避免了迟滞任务的误判导致计算资源浪费;备份任务完成时间预测算法,节约计算节点的计算资源,减少作业的完成时间,提高了集群的整体性能。
-
公开(公告)号:CN110109733B
公开(公告)日:2022-06-24
申请号:CN201910354679.7
申请日:2019-04-29
Applicant: 东北大学
Abstract: 本发明提供一种面向不同老化场景的虚拟机工作队列和冗余队列更新方法,涉及云计算技术领域。该方法首先根据虚拟机的生存时间和负载的波动情况划分不同的软件老化场景,然后采用基于岭回归的虚拟机工作队列动态更新的方法,动态地调整工作虚拟机副本的数目和顺序;最后基于二元决策图动态更新虚拟机的冗余队列。本发明提供的面向不同老化场景的虚拟机工作队列和冗余队列更新方法,通过选择和切换策略平衡虚拟机的服务质量和资源成本,保证系统的服务质量,即使工作虚拟机出现服务失效,冗余虚拟机能在短时间内切换状态,完全替代服务失效虚拟机。
-
公开(公告)号:CN110083518B
公开(公告)日:2021-11-16
申请号:CN201910354685.2
申请日:2019-04-29
Applicant: 东北大学
IPC: G06F11/34
Abstract: 本发明提供一种基于AdaBoost‑Elman的虚拟机软件老化预测方法,涉及云计算技术领域。该方法首先设定评估虚拟机软件老化程度的等级,并训练虚拟机的软件老化指标预测模型和未老化虚拟机参照预测模型;然后将业务并发量预测值和性能数据输入到离线过程训练的虚拟机的软件老化指标预测模型和未老化虚拟机参照预测模型中,输出虚拟机的软件老化指标预测结果和未老化虚拟机的参照预测结果;最后根据虚拟机的软件老化指标预测结果和未老化虚拟机的参照预测结果来评估虚拟机的软件老化趋势。本发明方法能够预测出当前工作虚拟机的软件老化指标,并与未老化的虚拟机进行对比,从而得到下一段时间虚拟机的软件老化程度,提前采取防范措施。
-
公开(公告)号:CN109993772A
公开(公告)日:2019-07-09
申请号:CN201910230234.8
申请日:2019-03-26
Applicant: 东北大学
Abstract: 本发明提供一种基于时空采样的实例级别特征聚合方法,涉及计算机视觉技术领域。基于时空采样的实例级别特征聚合方法,首先基于光流进行实例运动位移预测,得到相邻帧的候选框位置;并基于运动位移进行实例级别的特征采样,得到候选框在当前帧及其前后相邻两帧的采样特征;然后基于光流质量和外观质量进行实例级权重计算,提取候选框k对应的位置敏感的实例级权重;最后将当前帧i与其相邻帧i‑t和i+t的实例级别特征通过位置敏感的实例级权重进行聚合,得到聚合后的实例级别的特征。本发明提供的基于时空采样的实例级别特征聚合方法,能有效的利用相邻帧之间的运动信息,进而提升运动模糊、变形等复杂场景下的视频目标检测的精度。
-
-
-
-
-